Properties

Label 16.0.23922443742...4089.2
Degree $16$
Signature $[0, 8]$
Discriminant $13^{14}\cdot 157^{4}$
Root discriminant $33.39$
Ramified primes $13, 157$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_2\wr C_4$ (as 16T158)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![10000, 0, 33300, 0, 43773, 0, 30432, 0, 12382, 0, 3033, 0, 435, 0, 33, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 33*x^14 + 435*x^12 + 3033*x^10 + 12382*x^8 + 30432*x^6 + 43773*x^4 + 33300*x^2 + 10000)
 
gp: K = bnfinit(x^16 + 33*x^14 + 435*x^12 + 3033*x^10 + 12382*x^8 + 30432*x^6 + 43773*x^4 + 33300*x^2 + 10000, 1)
 

Normalized defining polynomial

\( x^{16} + 33 x^{14} + 435 x^{12} + 3033 x^{10} + 12382 x^{8} + 30432 x^{6} + 43773 x^{4} + 33300 x^{2} + 10000 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(2392244374201127641154089=13^{14}\cdot 157^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $33.39$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $13, 157$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{6} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a + \frac{1}{3}$, $\frac{1}{6} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} + \frac{1}{3} a$, $\frac{1}{6} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{6} a^{11} - \frac{1}{2} a^{6} + \frac{1}{3} a^{3} - \frac{1}{2} a$, $\frac{1}{102} a^{12} - \frac{4}{51} a^{10} + \frac{7}{102} a^{8} + \frac{13}{34} a^{6} - \frac{1}{2} a^{5} - \frac{1}{3} a^{4} - \frac{2}{51} a^{2} + \frac{13}{51}$, $\frac{1}{510} a^{13} - \frac{7}{85} a^{11} - \frac{1}{51} a^{9} - \frac{2}{85} a^{7} - \frac{7}{15} a^{5} - \frac{1}{2} a^{4} - \frac{41}{170} a^{3} - \frac{1}{2} a^{2} + \frac{43}{510} a$, $\frac{1}{520200} a^{14} - \frac{1}{1020} a^{13} + \frac{2333}{520200} a^{12} - \frac{43}{1020} a^{11} - \frac{1813}{104040} a^{10} - \frac{5}{68} a^{9} - \frac{38467}{520200} a^{8} - \frac{81}{340} a^{7} + \frac{116191}{260100} a^{6} + \frac{7}{30} a^{5} - \frac{32071}{65025} a^{4} - \frac{151}{510} a^{3} + \frac{17573}{520200} a^{2} - \frac{71}{340} a + \frac{1357}{5202}$, $\frac{1}{5202000} a^{15} + \frac{2333}{5202000} a^{13} + \frac{32867}{1040400} a^{11} - \frac{38467}{5202000} a^{9} - \frac{13859}{2601000} a^{7} - \frac{1}{2} a^{6} + \frac{81502}{325125} a^{5} - \frac{1}{2} a^{4} + \frac{364373}{5202000} a^{3} - \frac{2912}{13005} a - \frac{1}{2}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 787627.936673 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\wr C_4$ (as 16T158):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 64
The 13 conjugacy class representatives for $C_2\wr C_4$
Character table for $C_2\wr C_4$

Intermediate fields

\(\Q(\sqrt{13}) \), 4.4.344929.1, 4.0.2197.1, 4.0.26533.1, 8.4.1546688195533.1 x2, 8.0.9851517169.1 x2, 8.0.118976015041.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 8 siblings: data not computed
Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$13$13.8.7.2$x^{8} - 52$$8$$1$$7$$C_8:C_2$$[\ ]_{8}^{2}$
13.8.7.2$x^{8} - 52$$8$$1$$7$$C_8:C_2$$[\ ]_{8}^{2}$
$157$157.2.0.1$x^{2} - x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
157.2.0.1$x^{2} - x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
157.2.0.1$x^{2} - x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
157.2.0.1$x^{2} - x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
157.4.2.1$x^{4} + 1727 x^{2} + 887364$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
157.4.2.1$x^{4} + 1727 x^{2} + 887364$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$