Normalized defining polynomial
\( x^{16} - 4 x^{15} - 3 x^{14} + 15 x^{13} + 111 x^{12} - 385 x^{11} + 329 x^{10} - 9 x^{9} + 1261 x^{8} - 2917 x^{7} + 2161 x^{6} - 987 x^{5} + 4987 x^{4} - 1275 x^{3} + 5463 x^{2} - 486 x + 2349 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2392244374201127641154089=13^{14}\cdot 157^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 157$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{9} a^{12} + \frac{1}{9} a^{11} + \frac{1}{9} a^{10} + \frac{1}{9} a^{9} + \frac{1}{9} a^{8} - \frac{2}{9} a^{6} - \frac{4}{9} a^{5} - \frac{2}{9} a^{4} + \frac{2}{9} a^{3} + \frac{1}{9} a^{2}$, $\frac{1}{9} a^{13} - \frac{1}{9} a^{8} + \frac{1}{9} a^{7} + \frac{4}{9} a^{6} - \frac{1}{9} a^{5} + \frac{4}{9} a^{4} - \frac{4}{9} a^{3} + \frac{2}{9} a^{2} + \frac{1}{3} a$, $\frac{1}{13770} a^{14} + \frac{167}{4590} a^{13} - \frac{23}{918} a^{12} + \frac{211}{4590} a^{11} + \frac{137}{4590} a^{10} + \frac{1979}{13770} a^{9} + \frac{131}{810} a^{8} + \frac{1243}{13770} a^{7} - \frac{823}{13770} a^{6} - \frac{5033}{13770} a^{5} - \frac{1993}{13770} a^{4} + \frac{389}{13770} a^{3} - \frac{19}{90} a^{2} - \frac{577}{1530} a - \frac{179}{510}$, $\frac{1}{260931922621902597897270} a^{15} + \frac{5852029144813265509}{260931922621902597897270} a^{14} + \frac{201668860740064160363}{5116312208272599958770} a^{13} + \frac{1498045991619330698027}{28992435846878066433030} a^{12} + \frac{442349031816975185713}{5798487169375613286606} a^{11} - \frac{19666621015435498679293}{260931922621902597897270} a^{10} - \frac{11693096443738035116627}{86977307540634199299090} a^{9} - \frac{37867851769741544486641}{260931922621902597897270} a^{8} + \frac{12526454602066972885097}{86977307540634199299090} a^{7} - \frac{426845794960306077449}{86977307540634199299090} a^{6} - \frac{39311678557759876385099}{86977307540634199299090} a^{5} + \frac{23219134154519792979641}{52186384524380519579454} a^{4} + \frac{19700084135978882999527}{52186384524380519579454} a^{3} + \frac{9758623201353901696069}{28992435846878066433030} a^{2} + \frac{7978285539998620748627}{28992435846878066433030} a + \frac{1794502898818426431074}{4832072641146344405505}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2733055.66648 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\wr C_4$ (as 16T157):
| A solvable group of order 64 |
| The 13 conjugacy class representatives for $C_2\wr C_4$ |
| Character table for $C_2\wr C_4$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 4.0.2197.1, 8.0.9851517169.1 x2, 8.0.118976015041.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 13 | Data not computed | ||||||
| 157 | Data not computed | ||||||