Normalized defining polynomial
\( x^{16} + 884 x^{14} + 259454 x^{12} + 31648968 x^{10} + 1869438116 x^{8} + 55955375424 x^{6} + 811007540096 x^{4} + 4885387839488 x^{2} + 9770775678976 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(238796025103060449638782189092971852333056=2^{44}\cdot 13^{12}\cdot 17^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $385.59$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3536=2^{4}\cdot 13\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3536}(1,·)$, $\chi_{3536}(3141,·)$, $\chi_{3536}(1665,·)$, $\chi_{3536}(2313,·)$, $\chi_{3536}(2189,·)$, $\chi_{3536}(21,·)$, $\chi_{3536}(1373,·)$, $\chi_{3536}(837,·)$, $\chi_{3536}(545,·)$, $\chi_{3536}(421,·)$, $\chi_{3536}(2209,·)$, $\chi_{3536}(2605,·)$, $\chi_{3536}(1769,·)$, $\chi_{3536}(441,·)$, $\chi_{3536}(1789,·)$, $\chi_{3536}(3433,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{442} a^{4}$, $\frac{1}{442} a^{5}$, $\frac{1}{1326} a^{6} - \frac{1}{1326} a^{4} + \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{1326} a^{7} - \frac{1}{1326} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{2930460} a^{8} - \frac{1}{6630} a^{6} - \frac{1}{3315} a^{4} - \frac{4}{15} a^{2} + \frac{2}{5}$, $\frac{1}{5860920} a^{9} + \frac{1}{3315} a^{7} - \frac{7}{13260} a^{5} - \frac{7}{15} a^{3} + \frac{1}{30} a$, $\frac{1}{11721840} a^{10} - \frac{3}{8840} a^{6} - \frac{1}{2210} a^{4} - \frac{7}{60} a^{2} + \frac{1}{5}$, $\frac{1}{23443680} a^{11} + \frac{11}{53040} a^{7} - \frac{2}{3315} a^{5} - \frac{47}{120} a^{3} + \frac{13}{30} a$, $\frac{1}{2176042377600} a^{12} - \frac{61}{2461586400} a^{10} - \frac{167}{1641057600} a^{8} - \frac{953}{5569200} a^{6} + \frac{2027}{3712800} a^{4} + \frac{247}{6300} a^{2} - \frac{731}{1575}$, $\frac{1}{4352084755200} a^{13} - \frac{61}{4923172800} a^{11} - \frac{167}{3282115200} a^{9} - \frac{953}{11138400} a^{7} + \frac{2027}{7425600} a^{5} - \frac{6053}{12600} a^{3} + \frac{422}{1575} a$, $\frac{1}{443912645030400} a^{14} + \frac{2687}{77255942400} a^{10} + \frac{137}{1054965600} a^{8} - \frac{482903}{2272233600} a^{6} + \frac{1243}{6683040} a^{4} - \frac{211}{5950} a^{2} + \frac{232}{4725}$, $\frac{1}{887825290060800} a^{15} + \frac{2687}{154511884800} a^{11} + \frac{137}{2109931200} a^{9} - \frac{482903}{4544467200} a^{7} - \frac{13877}{13366080} a^{5} + \frac{5739}{11900} a^{3} - \frac{4493}{9450} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{4}\times C_{8}\times C_{312}\times C_{1560}$, which has order $498401280$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 897048.5749561078 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.22.5 | $x^{8} + 10 x^{4} + 16 x + 36$ | $4$ | $2$ | $22$ | $C_4\times C_2$ | $[3, 4]^{2}$ |
| 2.8.22.5 | $x^{8} + 10 x^{4} + 16 x + 36$ | $4$ | $2$ | $22$ | $C_4\times C_2$ | $[3, 4]^{2}$ | |
| $13$ | 13.8.6.2 | $x^{8} + 39 x^{4} + 676$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 13.8.6.2 | $x^{8} + 39 x^{4} + 676$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $17$ | 17.4.3.2 | $x^{4} - 153$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 17.4.3.2 | $x^{4} - 153$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17.4.3.2 | $x^{4} - 153$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17.4.3.2 | $x^{4} - 153$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |