Normalized defining polynomial
\( x^{16} + 88 x^{14} - 208 x^{13} + 8368 x^{12} - 20800 x^{11} + 638672 x^{10} - 1465568 x^{9} + 36424504 x^{8} - 70097664 x^{7} + 1387466400 x^{6} - 2216400576 x^{5} + 35413540288 x^{4} - 40748008704 x^{3} + 535089365184 x^{2} - 352153340032 x + 4121239940624 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(238796025103060449638782189092971852333056=2^{44}\cdot 13^{12}\cdot 17^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $385.59$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3536=2^{4}\cdot 13\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3536}(1,·)$, $\chi_{3536}(645,·)$, $\chi_{3536}(1665,·)$, $\chi_{3536}(2313,·)$, $\chi_{3536}(3229,·)$, $\chi_{3536}(1169,·)$, $\chi_{3536}(2517,·)$, $\chi_{3536}(441,·)$, $\chi_{3536}(2393,·)$, $\chi_{3536}(1565,·)$, $\chi_{3536}(837,·)$, $\chi_{3536}(421,·)$, $\chi_{3536}(1373,·)$, $\chi_{3536}(1585,·)$, $\chi_{3536}(2809,·)$, $\chi_{3536}(1789,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{4} a^{4} - \frac{1}{2}$, $\frac{1}{4} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{64} a^{8} + \frac{1}{16} a^{6} - \frac{1}{8} a^{5} - \frac{1}{2} a^{3} + \frac{3}{8} a^{2} - \frac{1}{4} a + \frac{7}{16}$, $\frac{1}{64} a^{9} + \frac{1}{16} a^{7} - \frac{1}{8} a^{6} + \frac{3}{8} a^{3} - \frac{1}{4} a^{2} + \frac{7}{16} a$, $\frac{1}{64} a^{10} - \frac{1}{8} a^{7} - \frac{1}{8} a^{4} - \frac{1}{4} a^{3} + \frac{7}{16} a^{2} + \frac{1}{4}$, $\frac{1}{2432} a^{11} - \frac{5}{1216} a^{9} + \frac{3}{608} a^{8} - \frac{11}{304} a^{7} + \frac{3}{76} a^{6} - \frac{25}{304} a^{5} - \frac{9}{152} a^{4} + \frac{131}{608} a^{3} - \frac{3}{38} a^{2} - \frac{121}{304} a + \frac{1}{8}$, $\frac{1}{96136960} a^{12} - \frac{537}{24034240} a^{11} - \frac{8213}{2403424} a^{10} + \frac{45691}{24034240} a^{9} + \frac{344401}{48068480} a^{8} + \frac{417489}{6008560} a^{7} - \frac{7975}{150214} a^{6} + \frac{7317}{375535} a^{5} - \frac{397933}{4806848} a^{4} - \frac{275977}{6008560} a^{3} + \frac{744429}{3004280} a^{2} - \frac{1058363}{6008560} a + \frac{143237}{632480}$, $\frac{1}{96136960} a^{13} - \frac{587}{48068480} a^{11} + \frac{131901}{24034240} a^{10} - \frac{3597}{2529920} a^{9} - \frac{153}{81472} a^{8} + \frac{329021}{3004280} a^{7} - \frac{138853}{6008560} a^{6} + \frac{41137}{358720} a^{5} - \frac{13949}{751070} a^{4} - \frac{4249941}{12017120} a^{3} - \frac{1758979}{6008560} a^{2} + \frac{436247}{2403424} a + \frac{124133}{316240}$, $\frac{1}{240634456740673762560} a^{14} + \frac{7250453557}{5013217848764036720} a^{13} - \frac{10821756265}{16042297116044917504} a^{12} + \frac{14296454301568909}{120317228370336881280} a^{11} - \frac{794794041145917361}{120317228370336881280} a^{10} - \frac{8266983902007357}{2005287139505614688} a^{9} + \frac{2678167689343529}{407855011424870784} a^{8} + \frac{167042649088039831}{1503965354629211016} a^{7} - \frac{700812006864386991}{20052871395056146880} a^{6} + \frac{756082052492510267}{15039653546292110160} a^{5} + \frac{412896354196456297}{4010574279011229376} a^{4} + \frac{2750963110401091639}{6015861418516844064} a^{3} + \frac{9206484678896748701}{30079307092584220320} a^{2} - \frac{82245266344994021}{187995669328651377} a - \frac{668962806848242901}{1583121425925485280}$, $\frac{1}{2530983223798414958912937996111360} a^{15} + \frac{362189091349}{210915268649867913242744833009280} a^{14} + \frac{5344557940145174207027}{1647775536327093072208944007885} a^{13} - \frac{61183840990493610178133}{16651205419726414203374592079680} a^{12} + \frac{32298677552909889100796499413}{1265491611899207479456468998055680} a^{11} + \frac{192425824207314153071081098581}{26364408581233489155343104126160} a^{10} - \frac{2338334979995365719059832544297}{316372902974801869864117249513920} a^{9} + \frac{348931239499910786886481136261}{79093225743700467466029312378480} a^{8} + \frac{9729902266870089057283600063}{3147989084326386764817087059840} a^{7} + \frac{7633938638596006827436640888453}{158186451487400934932058624756960} a^{6} + \frac{600518970986443750608979224629}{6591102145308372288835776031540} a^{5} + \frac{1210464241128605061682980111643}{15818645148740093493205862475696} a^{4} + \frac{50835639455694401962436327224067}{316372902974801869864117249513920} a^{3} - \frac{328029889657945475936845433738}{4943326608981279216626832023655} a^{2} - \frac{6558267100608082429616016905419}{15818645148740093493205862475696} a - \frac{1924053177469701468422015287}{69380022582193392514060800332}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{120}\times C_{15600}$, which has order $119808000$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 27023332.036477774 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4^2$ |
| Character table for $C_4^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | R | ${\href{/LocalNumberField/19.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{16}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.11.8 | $x^{4} + 4 x^{2} + 10$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ |
| 2.4.11.8 | $x^{4} + 4 x^{2} + 10$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
| 2.4.11.8 | $x^{4} + 4 x^{2} + 10$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
| 2.4.11.8 | $x^{4} + 4 x^{2} + 10$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
| $13$ | 13.8.6.2 | $x^{8} + 39 x^{4} + 676$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 13.8.6.2 | $x^{8} + 39 x^{4} + 676$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $17$ | 17.8.6.1 | $x^{8} - 119 x^{4} + 23409$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 17.8.6.1 | $x^{8} - 119 x^{4} + 23409$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |