Normalized defining polynomial
\( x^{16} - 4 x^{14} + 26 x^{12} - 216 x^{10} + 499 x^{8} - 1320 x^{6} + 11642 x^{4} + 5780 x^{2} + 83521 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(238075234378744256807305216=2^{48}\cdot 7^{4}\cdot 137^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.52$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 137$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2} - \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{5} - \frac{1}{2} a^{3} - \frac{1}{4} a$, $\frac{1}{24} a^{10} - \frac{1}{8} a^{9} - \frac{1}{24} a^{8} - \frac{1}{4} a^{7} + \frac{5}{24} a^{6} + \frac{1}{8} a^{5} + \frac{5}{24} a^{4} + \frac{1}{4} a^{3} + \frac{11}{24} a^{2} - \frac{1}{8} a - \frac{11}{24}$, $\frac{1}{24} a^{11} + \frac{1}{12} a^{9} - \frac{1}{8} a^{8} - \frac{1}{24} a^{7} - \frac{1}{4} a^{6} + \frac{1}{12} a^{5} + \frac{1}{8} a^{4} + \frac{5}{24} a^{3} + \frac{1}{4} a^{2} + \frac{1}{6} a - \frac{1}{8}$, $\frac{1}{72} a^{12} - \frac{1}{8} a^{9} - \frac{5}{72} a^{8} - \frac{1}{4} a^{7} + \frac{2}{9} a^{6} + \frac{1}{8} a^{5} - \frac{11}{72} a^{4} + \frac{1}{4} a^{3} + \frac{5}{12} a^{2} - \frac{1}{8} a + \frac{2}{9}$, $\frac{1}{1224} a^{13} - \frac{7}{408} a^{11} - \frac{55}{612} a^{9} - \frac{233}{1224} a^{7} - \frac{31}{612} a^{5} - \frac{151}{408} a^{3} - \frac{275}{1224} a$, $\frac{1}{49492369008} a^{14} - \frac{1}{2448} a^{13} - \frac{7641883}{6186546126} a^{12} + \frac{7}{816} a^{11} + \frac{166096129}{49492369008} a^{10} + \frac{55}{1224} a^{9} - \frac{48453667}{49492369008} a^{8} + \frac{233}{2448} a^{7} + \frac{10880308913}{49492369008} a^{6} - \frac{275}{1224} a^{5} - \frac{4312077551}{49492369008} a^{4} - \frac{53}{816} a^{3} + \frac{4665675121}{12373092252} a^{2} + \frac{887}{2448} a + \frac{5262649}{171253872}$, $\frac{1}{841370273136} a^{15} + \frac{282561943}{841370273136} a^{13} - \frac{1}{144} a^{12} - \frac{216248723}{210342568284} a^{11} - \frac{1}{48} a^{10} - \frac{99720585697}{841370273136} a^{9} + \frac{1}{18} a^{8} + \frac{5899274543}{210342568284} a^{7} + \frac{5}{144} a^{6} - \frac{75113660993}{841370273136} a^{5} + \frac{2}{9} a^{4} - \frac{291695696837}{841370273136} a^{3} - \frac{3}{16} a^{2} - \frac{54897485}{181957239} a + \frac{17}{144}$
Class group and class number
$C_{8}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 453515.357319 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 44 conjugacy class representatives for t16n969 |
| Character table for t16n969 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.4.7168.1, 8.4.112625451008.2, 8.4.112625451008.1, 8.0.964355424256.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $137$ | $\Q_{137}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{137}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{137}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{137}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 137.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 137.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 137.4.2.1 | $x^{4} + 1507 x^{2} + 675684$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 137.4.2.1 | $x^{4} + 1507 x^{2} + 675684$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |