Properties

Label 16.0.23807523437...5216.1
Degree $16$
Signature $[0, 8]$
Discriminant $2^{48}\cdot 7^{4}\cdot 137^{4}$
Root discriminant $44.52$
Ramified primes $2, 7, 137$
Class number $32$ (GRH)
Class group $[32]$ (GRH)
Galois group 16T969

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![5184, 0, 3456, 0, -1424, 0, -688, 0, 1657, 0, -732, 0, 106, 0, -4, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^14 + 106*x^12 - 732*x^10 + 1657*x^8 - 688*x^6 - 1424*x^4 + 3456*x^2 + 5184)
 
gp: K = bnfinit(x^16 - 4*x^14 + 106*x^12 - 732*x^10 + 1657*x^8 - 688*x^6 - 1424*x^4 + 3456*x^2 + 5184, 1)
 

Normalized defining polynomial

\( x^{16} - 4 x^{14} + 106 x^{12} - 732 x^{10} + 1657 x^{8} - 688 x^{6} - 1424 x^{4} + 3456 x^{2} + 5184 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(238075234378744256807305216=2^{48}\cdot 7^{4}\cdot 137^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $44.52$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 7, 137$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{4} a^{3}$, $\frac{1}{8} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{8} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{9} + \frac{3}{8} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{24} a^{11} + \frac{1}{24} a^{9} - \frac{1}{8} a^{7} + \frac{3}{8} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{96} a^{12} + \frac{1}{24} a^{10} - \frac{1}{16} a^{8} - \frac{1}{8} a^{6} - \frac{1}{2} a^{5} + \frac{1}{96} a^{4} + \frac{5}{12} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{192} a^{13} - \frac{1}{48} a^{11} + \frac{5}{96} a^{9} + \frac{1}{16} a^{7} - \frac{1}{4} a^{6} - \frac{95}{192} a^{5} - \frac{1}{2} a^{4} - \frac{5}{24} a^{3} + \frac{1}{4} a^{2} - \frac{1}{24} a$, $\frac{1}{120445274304} a^{14} - \frac{226600931}{60222637152} a^{12} - \frac{2655991027}{60222637152} a^{10} + \frac{58385683}{1254638274} a^{8} + \frac{12023503921}{120445274304} a^{6} - \frac{1}{2} a^{5} - \frac{28184798081}{60222637152} a^{4} - \frac{6794693935}{15055659288} a^{2} - \frac{1}{2} a - \frac{345528547}{836425516}$, $\frac{1}{722671645824} a^{15} - \frac{226600931}{361335822912} a^{13} - \frac{2655991027}{361335822912} a^{11} + \frac{744090503}{15055659288} a^{9} - \frac{48199133231}{722671645824} a^{7} - \frac{1}{4} a^{6} - \frac{103463094521}{361335822912} a^{5} - \frac{1}{2} a^{4} - \frac{21850353223}{90333955728} a^{3} + \frac{1}{4} a^{2} - \frac{672793193}{1672851032} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{32}$, which has order $32$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 453515.357319 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T969:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 512
The 44 conjugacy class representatives for t16n969
Character table for t16n969 is not computed

Intermediate fields

\(\Q(\sqrt{2}) \), 4.4.7168.1, 8.4.112625451008.2, 8.4.112625451008.1, 8.0.964355424256.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.24.47$x^{8} + 8 x^{2} + 8 x + 14$$8$$1$$24$$(((C_4 \times C_2): C_2):C_2):C_2$$[2, 2, 3, 7/2, 7/2]^{2}$
2.8.24.47$x^{8} + 8 x^{2} + 8 x + 14$$8$$1$$24$$(((C_4 \times C_2): C_2):C_2):C_2$$[2, 2, 3, 7/2, 7/2]^{2}$
$7$7.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
7.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
7.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
7.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
137Data not computed