Normalized defining polynomial
\( x^{16} - 2 x^{15} + x^{14} + 2 x^{13} + 4 x^{12} + 12 x^{11} - 33 x^{10} + 16 x^{9} + 71 x^{8} - 13 x^{6} - 4 x^{5} + 74 x^{4} + 90 x^{3} + 55 x^{2} + 6 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(237899776000000000000=2^{24}\cdot 5^{12}\cdot 241^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 241$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{93} a^{14} - \frac{6}{31} a^{13} - \frac{34}{93} a^{12} + \frac{12}{31} a^{11} - \frac{2}{31} a^{10} + \frac{4}{31} a^{9} + \frac{13}{31} a^{8} - \frac{20}{93} a^{7} - \frac{23}{93} a^{6} + \frac{13}{31} a^{5} + \frac{1}{31} a^{4} - \frac{1}{93} a^{3} - \frac{14}{31} a^{2} - \frac{1}{3} a - \frac{19}{93}$, $\frac{1}{14483303013} a^{15} + \frac{10722314}{4827767671} a^{14} + \frac{915878174}{14483303013} a^{13} - \frac{2041257170}{4827767671} a^{12} - \frac{1406577682}{4827767671} a^{11} + \frac{2029624386}{4827767671} a^{10} - \frac{697526446}{4827767671} a^{9} + \frac{7020368107}{14483303013} a^{8} - \frac{3171168038}{14483303013} a^{7} + \frac{2245624864}{4827767671} a^{6} + \frac{1237102193}{4827767671} a^{5} - \frac{502003411}{14483303013} a^{4} - \frac{1043750927}{4827767671} a^{3} + \frac{4105901498}{14483303013} a^{2} + \frac{6099015218}{14483303013} a - \frac{1414883385}{4827767671}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{604534222}{4827767671} a^{15} + \frac{4266132967}{14483303013} a^{14} - \frac{37656654}{155734441} a^{13} - \frac{2148019603}{14483303013} a^{12} - \frac{2259908890}{4827767671} a^{11} - \frac{6591203668}{4827767671} a^{10} + \frac{21980731982}{4827767671} a^{9} - \frac{18235654914}{4827767671} a^{8} - \frac{106545711386}{14483303013} a^{7} + \frac{33063665359}{14483303013} a^{6} - \frac{485615410}{4827767671} a^{5} + \frac{2573293257}{4827767671} a^{4} - \frac{138983310820}{14483303013} a^{3} - \frac{41761804800}{4827767671} a^{2} - \frac{73899660052}{14483303013} a + \frac{6488871659}{14483303013} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 17723.6658829 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3$ (as 16T208):
| A solvable group of order 128 |
| The 32 conjugacy class representatives for $C_2^4.C_2^3$ |
| Character table for $C_2^4.C_2^3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{10}) \), \(\Q(\zeta_{5})\), 4.0.8000.2, \(\Q(\sqrt{2}, \sqrt{5})\), 8.4.15424000000.4, 8.4.616960000.2, 8.0.64000000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ |
| 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 241 | Data not computed | ||||||