Normalized defining polynomial
\( x^{16} - 4 x^{15} + 21 x^{14} - 47 x^{13} + 150 x^{12} - 252 x^{11} + 716 x^{10} - 1224 x^{9} + 3145 x^{8} - 4977 x^{7} + 9431 x^{6} - 10964 x^{5} + 13848 x^{4} - 9722 x^{3} + 7618 x^{2} - 2116 x + 937 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2371212900396504113756570569=13^{6}\cdot 53^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{9} a^{10} - \frac{1}{9} a^{9} - \frac{1}{3} a^{7} + \frac{4}{9} a^{6} - \frac{1}{3} a^{5} + \frac{1}{9} a^{4} - \frac{1}{3} a^{3} + \frac{4}{9} a^{2} - \frac{4}{9} a + \frac{4}{9}$, $\frac{1}{27} a^{11} + \frac{1}{27} a^{10} - \frac{2}{27} a^{9} + \frac{2}{9} a^{8} - \frac{2}{27} a^{7} - \frac{4}{27} a^{6} + \frac{4}{27} a^{5} + \frac{8}{27} a^{4} - \frac{2}{27} a^{3} - \frac{5}{27} a^{2} - \frac{4}{27} a - \frac{1}{27}$, $\frac{1}{1053} a^{12} - \frac{1}{351} a^{11} + \frac{1}{351} a^{10} + \frac{140}{1053} a^{9} + \frac{514}{1053} a^{8} - \frac{320}{1053} a^{7} + \frac{515}{1053} a^{6} - \frac{62}{1053} a^{5} + \frac{218}{1053} a^{4} - \frac{44}{351} a^{3} + \frac{4}{81} a^{2} - \frac{34}{351} a - \frac{95}{1053}$, $\frac{1}{3159} a^{13} - \frac{1}{3159} a^{12} - \frac{1}{1053} a^{11} + \frac{146}{3159} a^{10} - \frac{259}{3159} a^{9} + \frac{236}{1053} a^{8} + \frac{928}{3159} a^{7} - \frac{1138}{3159} a^{6} - \frac{959}{3159} a^{5} + \frac{304}{3159} a^{4} - \frac{1265}{3159} a^{3} - \frac{1051}{3159} a^{2} - \frac{23}{243} a - \frac{1243}{3159}$, $\frac{1}{862407} a^{14} - \frac{23}{862407} a^{13} + \frac{397}{862407} a^{12} - \frac{6187}{862407} a^{11} - \frac{779}{287469} a^{10} + \frac{134089}{862407} a^{9} + \frac{182803}{862407} a^{8} + \frac{228142}{862407} a^{7} - \frac{55033}{862407} a^{6} - \frac{3970}{95823} a^{5} + \frac{427}{3159} a^{4} + \frac{145363}{862407} a^{3} + \frac{10889}{862407} a^{2} + \frac{402721}{862407} a - \frac{67532}{862407}$, $\frac{1}{2587221} a^{15} - \frac{44}{862407} a^{13} + \frac{487}{2587221} a^{12} - \frac{3188}{199017} a^{11} - \frac{118679}{2587221} a^{10} - \frac{143645}{862407} a^{9} - \frac{189128}{862407} a^{8} - \frac{1112429}{2587221} a^{7} - \frac{92912}{369603} a^{6} - \frac{56531}{862407} a^{5} + \frac{182764}{2587221} a^{4} + \frac{37288}{2587221} a^{3} - \frac{1103587}{2587221} a^{2} - \frac{45545}{862407} a - \frac{840706}{2587221}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3644382.66642 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 34 conjugacy class representatives for t16n1263 |
| Character table for t16n1263 is not computed |
Intermediate fields
| \(\Q(\sqrt{53}) \), 4.0.148877.1, 8.0.288136694677.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $53$ | 53.8.6.1 | $x^{8} - 1643 x^{4} + 1755625$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 53.8.6.1 | $x^{8} - 1643 x^{4} + 1755625$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |