Normalized defining polynomial
\( x^{16} - 4 x^{15} + 63 x^{14} - 203 x^{13} + 1548 x^{12} - 4029 x^{11} + 18563 x^{10} - 38020 x^{9} + 106997 x^{8} - 164769 x^{7} + 254636 x^{6} - 308607 x^{5} + 268176 x^{4} - 207376 x^{3} + 291264 x^{2} + 60416 x + 99328 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(236725729383493411014646970761=11^{2}\cdot 89^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $68.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{7} - \frac{1}{4} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{8} a^{4} + \frac{1}{8} a^{3} + \frac{1}{8} a^{2}$, $\frac{1}{16} a^{11} + \frac{1}{16} a^{8} - \frac{1}{4} a^{6} - \frac{1}{16} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{16} a^{2} - \frac{1}{4} a$, $\frac{1}{32} a^{12} + \frac{1}{32} a^{9} - \frac{1}{8} a^{7} + \frac{7}{32} a^{6} + \frac{1}{8} a^{5} - \frac{1}{8} a^{4} - \frac{9}{32} a^{3} - \frac{3}{8} a^{2}$, $\frac{1}{64} a^{13} - \frac{1}{64} a^{12} + \frac{1}{64} a^{10} - \frac{1}{64} a^{9} + \frac{1}{16} a^{8} - \frac{5}{64} a^{7} + \frac{13}{64} a^{6} + \frac{1}{8} a^{5} - \frac{5}{64} a^{4} - \frac{19}{64} a^{3} - \frac{3}{16} a^{2} + \frac{1}{4} a$, $\frac{1}{256} a^{14} + \frac{3}{256} a^{12} - \frac{3}{256} a^{11} + \frac{7}{256} a^{9} + \frac{27}{256} a^{8} - \frac{1}{32} a^{7} - \frac{63}{256} a^{6} - \frac{41}{256} a^{5} + \frac{5}{32} a^{4} - \frac{51}{256} a^{3} - \frac{1}{32} a^{2} - \frac{3}{8} a + \frac{1}{4}$, $\frac{1}{11122819602176426105731084988416} a^{15} + \frac{211944395367186048380711937}{1390352450272053263216385623552} a^{14} + \frac{45594771731837790804109820767}{11122819602176426105731084988416} a^{13} - \frac{152012784016898612851831696663}{11122819602176426105731084988416} a^{12} + \frac{1767810283075109744158629695}{1390352450272053263216385623552} a^{11} + \frac{317963701556023513469000798883}{11122819602176426105731084988416} a^{10} - \frac{272575220256386802697273325721}{11122819602176426105731084988416} a^{9} - \frac{12021285858261973602528777339}{695176225136026631608192811776} a^{8} + \frac{443355224130820493413120178165}{11122819602176426105731084988416} a^{7} + \frac{1348472484339976082469715574171}{11122819602176426105731084988416} a^{6} + \frac{87973181262196551663197975855}{695176225136026631608192811776} a^{5} + \frac{2242454356873398858515586235393}{11122819602176426105731084988416} a^{4} - \frac{1015247295801037018897333604521}{2780704900544106526432771247104} a^{3} + \frac{23266222198492444848960742929}{173794056284006657902048202944} a^{2} + \frac{4467874974901633525408520403}{173794056284006657902048202944} a + \frac{193595527177582103175532837}{447922825474243963665072688}$
Class group and class number
$C_{113}$, which has order $113$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 52312146.3689 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^5.C_2.C_2$ (as 16T258):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $C_2^5.C_2.C_2$ |
| Character table for $C_2^5.C_2.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{89}) \), 4.4.704969.1, 8.0.44231334895529.1, 8.2.5466794200571.1, 8.6.486544683850819.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $89$ | 89.8.7.3 | $x^{8} - 7209$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 89.8.7.3 | $x^{8} - 7209$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |