Normalized defining polynomial
\( x^{16} - 2 x^{15} + 2 x^{14} + 54 x^{13} + 51 x^{12} - 686 x^{11} + 3527 x^{10} - 1820 x^{9} - 30601 x^{8} + 136034 x^{7} - 124185 x^{6} - 473688 x^{5} + 2051118 x^{4} - 1944392 x^{3} - 1582275 x^{2} + 3764514 x + 3143164 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(236584058764743389289008392801=17^{12}\cdot 67^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $68.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{16} a^{10} + \frac{1}{16} a^{9} - \frac{1}{16} a^{8} + \frac{1}{8} a^{6} - \frac{1}{8} a^{5} + \frac{1}{16} a^{4} + \frac{1}{16} a^{3} + \frac{3}{16} a^{2} - \frac{1}{8} a - \frac{1}{4}$, $\frac{1}{16} a^{11} - \frac{1}{8} a^{9} + \frac{1}{16} a^{8} - \frac{1}{8} a^{7} - \frac{1}{16} a^{5} - \frac{1}{4} a^{4} - \frac{1}{8} a^{3} - \frac{1}{16} a^{2} + \frac{3}{8} a + \frac{1}{4}$, $\frac{1}{10336} a^{12} + \frac{101}{5168} a^{11} - \frac{287}{10336} a^{10} + \frac{5}{2584} a^{9} + \frac{17}{608} a^{8} + \frac{313}{2584} a^{7} - \frac{1131}{10336} a^{6} - \frac{47}{2584} a^{5} - \frac{2007}{10336} a^{4} - \frac{75}{304} a^{3} - \frac{79}{608} a^{2} + \frac{49}{304} a + \frac{55}{152}$, $\frac{1}{10336} a^{13} + \frac{253}{10336} a^{11} - \frac{73}{5168} a^{10} + \frac{125}{10336} a^{9} + \frac{507}{5168} a^{8} - \frac{803}{10336} a^{7} - \frac{851}{5168} a^{6} + \frac{2377}{10336} a^{5} - \frac{383}{2584} a^{4} + \frac{49}{608} a^{3} + \frac{5}{152} a^{2} + \frac{1}{19} a + \frac{31}{76}$, $\frac{1}{2087872} a^{14} - \frac{97}{2087872} a^{13} + \frac{47}{1043936} a^{12} + \frac{34927}{2087872} a^{11} - \frac{585}{260984} a^{10} - \frac{94395}{2087872} a^{9} - \frac{595}{30704} a^{8} - \frac{215903}{2087872} a^{7} - \frac{39145}{521968} a^{6} - \frac{156989}{2087872} a^{5} - \frac{194669}{1043936} a^{4} + \frac{34925}{122816} a^{3} - \frac{57063}{122816} a^{2} - \frac{23}{61408} a - \frac{2523}{30704}$, $\frac{1}{15750846049617908264068986046016} a^{15} - \frac{45752416032020738855817}{926520355859876956709940355648} a^{14} + \frac{254679882652863602435986939}{7875423024808954132034493023008} a^{13} + \frac{395330922812500168569942283}{15750846049617908264068986046016} a^{12} - \frac{8845448408482099415786212361}{984427878101119266504311627876} a^{11} + \frac{61135708771018510492628359185}{15750846049617908264068986046016} a^{10} + \frac{69805119842205278292033080775}{3937711512404477066017246511504} a^{9} - \frac{1459526853031526189192476600123}{15750846049617908264068986046016} a^{8} - \frac{86691616565337961455111317359}{3937711512404477066017246511504} a^{7} + \frac{346729691374814328842766584383}{15750846049617908264068986046016} a^{6} + \frac{5376076682800375357859248335}{605801771139150317848807155616} a^{5} + \frac{31240175463010383330968368985}{15750846049617908264068986046016} a^{4} + \frac{8621919981017666030069199817}{926520355859876956709940355648} a^{3} - \frac{145149433045952762599502383225}{463260177929938478354970177824} a^{2} - \frac{369671877090247500331364293}{901284392859802487071926416} a + \frac{1527555258378991260479076909}{57907522241242309794371272228}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 99025228.2163 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $QD_{16}$ |
| Character table for $QD_{16}$ |
Intermediate fields
| \(\Q(\sqrt{-1139}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-67}) \), \(\Q(\sqrt{17}, \sqrt{-67})\), 4.2.19363.1 x2, 4.0.76313.1 x2, 8.0.1683041777041.2, 8.2.7259687665147.2 x4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.4.3.1 | $x^{4} - 17$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 17.4.3.1 | $x^{4} - 17$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17.4.3.1 | $x^{4} - 17$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17.4.3.1 | $x^{4} - 17$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $67$ | 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |