Properties

Label 16.0.23642137600000000.2
Degree $16$
Signature $[0, 8]$
Discriminant $2.364\times 10^{16}$
Root discriminant \(10.55\)
Ramified primes $2,5,31$
Class number $1$
Class group trivial
Galois group $C_2\wr D_4$ (as 16T388)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 7*x^14 + 21*x^12 + 43*x^10 + 60*x^8 + 57*x^6 + 31*x^4 + 8*x^2 + 1)
 
gp: K = bnfinit(y^16 + 7*y^14 + 21*y^12 + 43*y^10 + 60*y^8 + 57*y^6 + 31*y^4 + 8*y^2 + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 + 7*x^14 + 21*x^12 + 43*x^10 + 60*x^8 + 57*x^6 + 31*x^4 + 8*x^2 + 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 + 7*x^14 + 21*x^12 + 43*x^10 + 60*x^8 + 57*x^6 + 31*x^4 + 8*x^2 + 1)
 

\( x^{16} + 7x^{14} + 21x^{12} + 43x^{10} + 60x^{8} + 57x^{6} + 31x^{4} + 8x^{2} + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $16$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 8]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(23642137600000000\) \(\medspace = 2^{16}\cdot 5^{8}\cdot 31^{4}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(10.55\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{3/2}5^{1/2}31^{1/2}\approx 35.21363372331802$
Ramified primes:   \(2\), \(5\), \(31\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $8$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{4}a^{12}-\frac{1}{2}a^{10}-\frac{1}{2}a^{9}-\frac{1}{2}a^{7}+\frac{1}{4}a^{6}-\frac{1}{4}a^{4}-\frac{1}{4}a^{2}-\frac{1}{2}a-\frac{1}{4}$, $\frac{1}{4}a^{13}-\frac{1}{2}a^{11}-\frac{1}{2}a^{10}-\frac{1}{2}a^{8}+\frac{1}{4}a^{7}-\frac{1}{4}a^{5}-\frac{1}{4}a^{3}-\frac{1}{2}a^{2}-\frac{1}{4}a$, $\frac{1}{164}a^{14}-\frac{7}{164}a^{12}-\frac{1}{2}a^{11}+\frac{39}{82}a^{10}+\frac{17}{164}a^{8}-\frac{1}{2}a^{7}-\frac{7}{82}a^{6}+\frac{12}{41}a^{4}-\frac{1}{2}a^{3}+\frac{14}{41}a^{2}-\frac{1}{2}a-\frac{79}{164}$, $\frac{1}{164}a^{15}-\frac{7}{164}a^{13}+\frac{39}{82}a^{11}+\frac{17}{164}a^{9}-\frac{1}{2}a^{8}-\frac{7}{82}a^{7}-\frac{1}{2}a^{6}+\frac{12}{41}a^{5}+\frac{14}{41}a^{3}-\frac{79}{164}a-\frac{1}{2}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $7$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{115}{82}a^{15}+\frac{397}{41}a^{13}+\frac{1164}{41}a^{11}+\frac{4661}{82}a^{9}+\frac{6303}{82}a^{7}+\frac{5643}{82}a^{5}+\frac{2709}{82}a^{3}+\frac{193}{41}a$, $\frac{151}{82}a^{15}+\frac{993}{82}a^{13}+\frac{1379}{41}a^{11}+\frac{5355}{82}a^{9}+\frac{3412}{41}a^{7}+\frac{2886}{41}a^{5}+\frac{1112}{41}a^{3}+\frac{207}{82}a$, $\frac{11}{82}a^{14}+\frac{87}{82}a^{12}+\frac{142}{41}a^{10}+\frac{597}{82}a^{8}+\frac{456}{41}a^{6}+\frac{428}{41}a^{4}+\frac{267}{41}a^{2}+\frac{115}{82}$, $\frac{11}{82}a^{15}+\frac{27}{82}a^{14}+\frac{133}{164}a^{13}+\frac{90}{41}a^{12}+\frac{161}{82}a^{11}+\frac{507}{82}a^{10}+\frac{269}{82}a^{9}+\frac{496}{41}a^{8}+\frac{471}{164}a^{7}+\frac{1303}{82}a^{6}+\frac{113}{164}a^{5}+\frac{1173}{82}a^{4}-\frac{367}{164}a^{3}+\frac{264}{41}a^{2}-\frac{385}{164}a+\frac{61}{41}$, $\frac{61}{41}a^{15}-\frac{11}{82}a^{14}+\frac{827}{82}a^{13}-\frac{133}{164}a^{12}+\frac{1191}{41}a^{11}-\frac{161}{82}a^{10}+\frac{4739}{82}a^{9}-\frac{269}{82}a^{8}+\frac{3164}{41}a^{7}-\frac{471}{164}a^{6}+\frac{5651}{82}a^{5}-\frac{113}{164}a^{4}+\frac{2609}{82}a^{3}+\frac{367}{164}a^{2}+\frac{224}{41}a+\frac{221}{164}$, $\frac{61}{41}a^{15}+\frac{11}{82}a^{14}+\frac{827}{82}a^{13}+\frac{133}{164}a^{12}+\frac{1191}{41}a^{11}+\frac{161}{82}a^{10}+\frac{4739}{82}a^{9}+\frac{269}{82}a^{8}+\frac{3164}{41}a^{7}+\frac{471}{164}a^{6}+\frac{5651}{82}a^{5}+\frac{113}{164}a^{4}+\frac{2609}{82}a^{3}-\frac{367}{164}a^{2}+\frac{224}{41}a-\frac{221}{164}$, $\frac{75}{164}a^{15}+\frac{133}{164}a^{14}+\frac{291}{82}a^{13}+\frac{873}{164}a^{12}+\frac{957}{82}a^{11}+\frac{605}{41}a^{10}+\frac{4063}{164}a^{9}+\frac{4721}{164}a^{8}+\frac{6043}{164}a^{7}+\frac{1523}{41}a^{6}+\frac{5937}{164}a^{5}+\frac{1309}{41}a^{4}+\frac{3503}{164}a^{3}+\frac{1141}{82}a^{2}+\frac{379}{82}a+\frac{399}{164}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 23.6552396581 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 23.6552396581 \cdot 1}{2\cdot\sqrt{23642137600000000}}\cr\approx \mathstrut & 0.186849927316 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^16 + 7*x^14 + 21*x^12 + 43*x^10 + 60*x^8 + 57*x^6 + 31*x^4 + 8*x^2 + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^16 + 7*x^14 + 21*x^12 + 43*x^10 + 60*x^8 + 57*x^6 + 31*x^4 + 8*x^2 + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^16 + 7*x^14 + 21*x^12 + 43*x^10 + 60*x^8 + 57*x^6 + 31*x^4 + 8*x^2 + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 + 7*x^14 + 21*x^12 + 43*x^10 + 60*x^8 + 57*x^6 + 31*x^4 + 8*x^2 + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2\wr D_4$ (as 16T388):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 128
The 20 conjugacy class representatives for $C_2\wr D_4$
Character table for $C_2\wr D_4$

Intermediate fields

\(\Q(\sqrt{5}) \), 4.2.775.1, 4.2.400.1, 4.0.12400.1, 8.2.9610000.1 x2, 8.2.4960000.1 x2, 8.0.153760000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 8 siblings: data not computed
Degree 16 siblings: data not computed
Degree 32 siblings: data not computed
Minimal sibling: 8.2.4960000.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.8.0.1}{8} }^{2}$ R ${\href{/padicField/7.4.0.1}{4} }^{4}$ ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{4}$ ${\href{/padicField/13.4.0.1}{4} }^{4}$ ${\href{/padicField/17.4.0.1}{4} }^{4}$ ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{4}$ ${\href{/padicField/23.8.0.1}{8} }^{2}$ ${\href{/padicField/29.2.0.1}{2} }^{8}$ R ${\href{/padicField/37.4.0.1}{4} }^{4}$ ${\href{/padicField/41.2.0.1}{2} }^{8}$ ${\href{/padicField/43.8.0.1}{8} }^{2}$ ${\href{/padicField/47.4.0.1}{4} }^{4}$ ${\href{/padicField/53.4.0.1}{4} }^{4}$ ${\href{/padicField/59.2.0.1}{2} }^{4}{,}\,{\href{/padicField/59.1.0.1}{1} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.8.8.2$x^{8} + 8 x^{7} + 56 x^{6} + 240 x^{5} + 816 x^{4} + 2048 x^{3} + 3776 x^{2} + 4928 x + 3760$$2$$4$$8$$C_2^2:C_4$$[2, 2]^{4}$
2.8.8.2$x^{8} + 8 x^{7} + 56 x^{6} + 240 x^{5} + 816 x^{4} + 2048 x^{3} + 3776 x^{2} + 4928 x + 3760$$2$$4$$8$$C_2^2:C_4$$[2, 2]^{4}$
\(5\) Copy content Toggle raw display 5.8.4.1$x^{8} + 80 x^{7} + 2428 x^{6} + 33688 x^{5} + 195810 x^{4} + 305952 x^{3} + 870132 x^{2} + 1037416 x + 503089$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.8.4.1$x^{8} + 80 x^{7} + 2428 x^{6} + 33688 x^{5} + 195810 x^{4} + 305952 x^{3} + 870132 x^{2} + 1037416 x + 503089$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
\(31\) Copy content Toggle raw display 31.2.1.1$x^{2} + 93$$2$$1$$1$$C_2$$[\ ]_{2}$
31.2.1.1$x^{2} + 93$$2$$1$$1$$C_2$$[\ ]_{2}$
31.2.1.1$x^{2} + 93$$2$$1$$1$$C_2$$[\ ]_{2}$
31.2.1.1$x^{2} + 93$$2$$1$$1$$C_2$$[\ ]_{2}$
31.4.0.1$x^{4} + 3 x^{2} + 16 x + 3$$1$$4$$0$$C_4$$[\ ]^{4}$
31.4.0.1$x^{4} + 3 x^{2} + 16 x + 3$$1$$4$$0$$C_4$$[\ ]^{4}$