Properties

Label 16.0.236...000.2
Degree $16$
Signature $[0, 8]$
Discriminant $2.361\times 10^{22}$
Root discriminant \(25.02\)
Ramified primes $2,5,7$
Class number $4$ (GRH)
Class group [4] (GRH)
Galois group $C_4\times C_2^2$ (as 16T2)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 8*x^15 + 48*x^14 - 196*x^13 + 656*x^12 - 1752*x^11 + 3898*x^10 - 7148*x^9 + 10467*x^8 - 11960*x^7 + 8262*x^6 - 264*x^5 + 372*x^4 - 6272*x^3 + 4376*x^2 - 480*x + 16)
 
gp: K = bnfinit(y^16 - 8*y^15 + 48*y^14 - 196*y^13 + 656*y^12 - 1752*y^11 + 3898*y^10 - 7148*y^9 + 10467*y^8 - 11960*y^7 + 8262*y^6 - 264*y^5 + 372*y^4 - 6272*y^3 + 4376*y^2 - 480*y + 16, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 - 8*x^15 + 48*x^14 - 196*x^13 + 656*x^12 - 1752*x^11 + 3898*x^10 - 7148*x^9 + 10467*x^8 - 11960*x^7 + 8262*x^6 - 264*x^5 + 372*x^4 - 6272*x^3 + 4376*x^2 - 480*x + 16);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 - 8*x^15 + 48*x^14 - 196*x^13 + 656*x^12 - 1752*x^11 + 3898*x^10 - 7148*x^9 + 10467*x^8 - 11960*x^7 + 8262*x^6 - 264*x^5 + 372*x^4 - 6272*x^3 + 4376*x^2 - 480*x + 16)
 

\( x^{16} - 8 x^{15} + 48 x^{14} - 196 x^{13} + 656 x^{12} - 1752 x^{11} + 3898 x^{10} - 7148 x^{9} + \cdots + 16 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $16$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 8]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(23612624896000000000000\) \(\medspace = 2^{24}\cdot 5^{12}\cdot 7^{8}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(25.02\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{3/2}5^{3/4}7^{1/2}\approx 25.021971019484877$
Ramified primes:   \(2\), \(5\), \(7\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $16$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(280=2^{3}\cdot 5\cdot 7\)
Dirichlet character group:    $\lbrace$$\chi_{280}(1,·)$, $\chi_{280}(69,·)$, $\chi_{280}(13,·)$, $\chi_{280}(141,·)$, $\chi_{280}(209,·)$, $\chi_{280}(153,·)$, $\chi_{280}(29,·)$, $\chi_{280}(197,·)$, $\chi_{280}(97,·)$, $\chi_{280}(41,·)$, $\chi_{280}(237,·)$, $\chi_{280}(113,·)$, $\chi_{280}(181,·)$, $\chi_{280}(169,·)$, $\chi_{280}(57,·)$, $\chi_{280}(253,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{128}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{3}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{3}$, $\frac{1}{4}a^{8}-\frac{1}{4}a^{4}$, $\frac{1}{4}a^{9}-\frac{1}{4}a^{5}$, $\frac{1}{4}a^{10}-\frac{1}{4}a^{6}$, $\frac{1}{4}a^{11}-\frac{1}{4}a^{7}$, $\frac{1}{40}a^{12}+\frac{1}{10}a^{11}-\frac{3}{40}a^{10}-\frac{1}{40}a^{8}+\frac{1}{5}a^{7}-\frac{9}{40}a^{6}+\frac{1}{10}a^{5}-\frac{1}{10}a^{4}+\frac{2}{5}a^{3}+\frac{2}{5}a^{2}+\frac{1}{5}a+\frac{2}{5}$, $\frac{1}{40}a^{13}+\frac{1}{40}a^{11}+\frac{1}{20}a^{10}-\frac{1}{40}a^{9}+\frac{1}{20}a^{8}-\frac{1}{40}a^{7}-\frac{1}{4}a^{6}+\frac{1}{20}a^{4}-\frac{1}{5}a^{3}+\frac{1}{10}a^{2}-\frac{2}{5}a+\frac{2}{5}$, $\frac{1}{847507160}a^{14}-\frac{7}{847507160}a^{13}+\frac{8689041}{847507160}a^{12}-\frac{10426831}{169501432}a^{11}+\frac{40085}{936472}a^{10}+\frac{84634839}{847507160}a^{9}-\frac{456891}{8921128}a^{8}-\frac{60158713}{847507160}a^{7}-\frac{214483}{1389356}a^{6}-\frac{15079731}{105938395}a^{5}-\frac{35775893}{211876790}a^{4}+\frac{19241563}{42375358}a^{3}-\frac{104233}{585295}a^{2}+\frac{23346361}{105938395}a+\frac{7502711}{105938395}$, $\frac{1}{2801011163800}a^{15}+\frac{329}{560202232760}a^{14}-\frac{2336899791}{1400505581900}a^{13}+\frac{9725622913}{2801011163800}a^{12}-\frac{8407651763}{280101116380}a^{11}+\frac{274560552493}{2801011163800}a^{10}+\frac{92991838641}{1400505581900}a^{9}-\frac{214696714787}{2801011163800}a^{8}-\frac{343319650759}{2801011163800}a^{7}-\frac{45265879711}{1400505581900}a^{6}-\frac{65514602683}{350126395475}a^{5}-\frac{44892454613}{1400505581900}a^{4}-\frac{83081896592}{350126395475}a^{3}-\frac{29662287261}{70025279095}a^{2}-\frac{127620462993}{350126395475}a-\frac{173188401789}{350126395475}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{4}$, which has order $4$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $7$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( \frac{3162903}{423753580} a^{14} - \frac{22140321}{423753580} a^{13} + \frac{259143999}{847507160} a^{12} - \frac{122401956}{105938395} a^{11} + \frac{17468601}{4682360} a^{10} - \frac{3944147883}{423753580} a^{9} + \frac{877017393}{44605640} a^{8} - \frac{7071434721}{211876790} a^{7} + \frac{612123373}{13893560} a^{6} - \frac{9319400199}{211876790} a^{5} + \frac{6724200103}{423753580} a^{4} + \frac{1697853116}{105938395} a^{3} + \frac{20065621}{1170590} a^{2} - \frac{3064218226}{105938395} a + \frac{272112387}{105938395} \)  (order $10$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{5109}{22302820}a^{14}-\frac{35763}{22302820}a^{13}+\frac{439941}{44605640}a^{12}-\frac{213726}{5575705}a^{11}+\frac{32411}{246440}a^{10}-\frac{7681709}{22302820}a^{9}+\frac{35324717}{44605640}a^{8}-\frac{3250195}{2230282}a^{7}+\frac{1638423}{731240}a^{6}-\frac{30276173}{11151410}a^{5}+\frac{47234981}{22302820}a^{4}-\frac{5008004}{5575705}a^{3}+\frac{5437}{30805}a^{2}-\frac{76304}{5575705}a+\frac{3448094}{5575705}$, $\frac{7670780656}{350126395475}a^{15}-\frac{43934005053}{280101116380}a^{14}+\frac{1291140434127}{1400505581900}a^{13}-\frac{9899203221761}{2801011163800}a^{12}+\frac{804547362321}{70025279095}a^{11}-\frac{81394795041231}{2801011163800}a^{10}+\frac{86901651643683}{1400505581900}a^{9}-\frac{300087714381561}{2801011163800}a^{8}+\frac{101513931030517}{700252790950}a^{7}-\frac{419927826428551}{2801011163800}a^{6}+\frac{47670228117517}{700252790950}a^{5}+\frac{53012805869191}{1400505581900}a^{4}+\frac{32401596146493}{700252790950}a^{3}-\frac{13506081567357}{140050558190}a^{2}+\frac{7909110382356}{350126395475}a-\frac{500659210857}{350126395475}$, $\frac{34585042681}{1400505581900}a^{15}-\frac{97270321443}{560202232760}a^{14}+\frac{2845353972881}{2801011163800}a^{13}-\frac{10775156559419}{2801011163800}a^{12}+\frac{6957488262053}{560202232760}a^{11}-\frac{74996338571}{2416748200}a^{10}+\frac{183609934207259}{2801011163800}a^{9}-\frac{312060588661339}{2801011163800}a^{8}+\frac{412314565807817}{2801011163800}a^{7}-\frac{103026772508821}{700252790950}a^{6}+\frac{19013786243249}{350126395475}a^{5}+\frac{74107740950719}{1400505581900}a^{4}+\frac{1086125360229}{18427705025}a^{3}-\frac{7136860688489}{70025279095}a^{2}+\frac{2346218004074}{350126395475}a-\frac{84738305453}{350126395475}$, $\frac{10203924346}{350126395475}a^{15}-\frac{56903721369}{280101116380}a^{14}+\frac{1663006752747}{1400505581900}a^{13}-\frac{12530147810761}{2801011163800}a^{12}+\frac{201909014611}{14005055819}a^{11}-\frac{100426764929151}{2801011163800}a^{10}+\frac{105752804485853}{1400505581900}a^{9}-\frac{3539419844431}{27732783800}a^{8}+\frac{117210834203127}{700252790950}a^{7}-\frac{463641704752491}{2801011163800}a^{6}+\frac{39288611951517}{700252790950}a^{5}+\frac{22602115892494}{350126395475}a^{4}+\frac{25103010526934}{350126395475}a^{3}-\frac{419475263736}{3685541005}a^{2}+\frac{1947214113716}{350126395475}a+\frac{56338474073}{350126395475}$, $\frac{2905214158}{350126395475}a^{15}-\frac{17292818007}{280101116380}a^{14}+\frac{511403129541}{1400505581900}a^{13}-\frac{4011551030023}{2801011163800}a^{12}+\frac{329214021541}{70025279095}a^{11}-\frac{33989064594473}{2801011163800}a^{10}+\frac{36819409162759}{1400505581900}a^{9}-\frac{130109002208453}{2801011163800}a^{8}+\frac{45349256390301}{700252790950}a^{7}-\frac{194979353015413}{2801011163800}a^{6}+\frac{26749581447771}{700252790950}a^{5}+\frac{7774633034529}{700252790950}a^{4}+\frac{3852988023222}{350126395475}a^{3}-\frac{5550747796591}{140050558190}a^{2}+\frac{4600633708958}{350126395475}a-\frac{44643912646}{350126395475}$, $\frac{681618159}{36855410050}a^{15}-\frac{72371387943}{560202232760}a^{14}+\frac{264385428889}{350126395475}a^{13}-\frac{3988536889009}{1400505581900}a^{12}+\frac{1285620913979}{140050558190}a^{11}-\frac{32000953719199}{1400505581900}a^{10}+\frac{67418556390999}{1400505581900}a^{9}-\frac{6002877408571}{73710820100}a^{8}+\frac{1227283262871}{11479553950}a^{7}-\frac{296527406009763}{2801011163800}a^{6}+\frac{50869756815037}{1400505581900}a^{5}+\frac{14369701317742}{350126395475}a^{4}+\frac{31671212906739}{700252790950}a^{3}-\frac{5152785559402}{70025279095}a^{2}+\frac{1126005458758}{350126395475}a+\frac{370604}{56829475}$, $\frac{5315520867}{1400505581900}a^{15}-\frac{17162450949}{560202232760}a^{14}+\frac{514879877177}{2801011163800}a^{13}-\frac{1054910736189}{1400505581900}a^{12}+\frac{1412541077803}{560202232760}a^{11}-\frac{2362390005481}{350126395475}a^{10}+\frac{42062499904223}{2801011163800}a^{9}-\frac{19307821152027}{700252790950}a^{8}+\frac{113262370836419}{2801011163800}a^{7}-\frac{129611057055043}{2801011163800}a^{6}+\frac{22704753903311}{700252790950}a^{5}-\frac{124340559123}{73710820100}a^{4}+\frac{1863433189059}{700252790950}a^{3}-\frac{3820696169421}{140050558190}a^{2}+\frac{6188570288363}{350126395475}a-\frac{204587998211}{350126395475}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 34736.104354 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 34736.104354 \cdot 4}{10\cdot\sqrt{23612624896000000000000}}\cr\approx \mathstrut & 0.21963821977 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^16 - 8*x^15 + 48*x^14 - 196*x^13 + 656*x^12 - 1752*x^11 + 3898*x^10 - 7148*x^9 + 10467*x^8 - 11960*x^7 + 8262*x^6 - 264*x^5 + 372*x^4 - 6272*x^3 + 4376*x^2 - 480*x + 16)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^16 - 8*x^15 + 48*x^14 - 196*x^13 + 656*x^12 - 1752*x^11 + 3898*x^10 - 7148*x^9 + 10467*x^8 - 11960*x^7 + 8262*x^6 - 264*x^5 + 372*x^4 - 6272*x^3 + 4376*x^2 - 480*x + 16, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^16 - 8*x^15 + 48*x^14 - 196*x^13 + 656*x^12 - 1752*x^11 + 3898*x^10 - 7148*x^9 + 10467*x^8 - 11960*x^7 + 8262*x^6 - 264*x^5 + 372*x^4 - 6272*x^3 + 4376*x^2 - 480*x + 16);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 - 8*x^15 + 48*x^14 - 196*x^13 + 656*x^12 - 1752*x^11 + 3898*x^10 - 7148*x^9 + 10467*x^8 - 11960*x^7 + 8262*x^6 - 264*x^5 + 372*x^4 - 6272*x^3 + 4376*x^2 - 480*x + 16);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^2\times C_4$ (as 16T2):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
An abelian group of order 16
The 16 conjugacy class representatives for $C_4\times C_2^2$
Character table for $C_4\times C_2^2$

Intermediate fields

\(\Q(\sqrt{-35}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-70}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{-14}) \), \(\Q(\sqrt{2}, \sqrt{-35})\), \(\Q(\sqrt{5}, \sqrt{-7})\), \(\Q(\sqrt{10}, \sqrt{-14})\), \(\Q(\sqrt{2}, \sqrt{5})\), \(\Q(\sqrt{2}, \sqrt{-7})\), \(\Q(\sqrt{5}, \sqrt{-14})\), \(\Q(\sqrt{-7}, \sqrt{10})\), \(\Q(\zeta_{5})\), 4.4.6125.1, 4.0.8000.2, 4.4.392000.1, 8.0.6146560000.2, 8.0.37515625.1, 8.0.153664000000.2, 8.0.64000000.2, 8.8.153664000000.1, 8.0.153664000000.5, 8.0.153664000000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.4.0.1}{4} }^{4}$ R R ${\href{/padicField/11.2.0.1}{2} }^{8}$ ${\href{/padicField/13.4.0.1}{4} }^{4}$ ${\href{/padicField/17.4.0.1}{4} }^{4}$ ${\href{/padicField/19.2.0.1}{2} }^{8}$ ${\href{/padicField/23.4.0.1}{4} }^{4}$ ${\href{/padicField/29.2.0.1}{2} }^{8}$ ${\href{/padicField/31.2.0.1}{2} }^{8}$ ${\href{/padicField/37.4.0.1}{4} }^{4}$ ${\href{/padicField/41.2.0.1}{2} }^{8}$ ${\href{/padicField/43.4.0.1}{4} }^{4}$ ${\href{/padicField/47.4.0.1}{4} }^{4}$ ${\href{/padicField/53.4.0.1}{4} }^{4}$ ${\href{/padicField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.8.12.1$x^{8} - 12 x^{7} + 52 x^{6} + 840 x^{5} + 3808 x^{4} + 10224 x^{3} + 17968 x^{2} + 20576 x + 15216$$2$$4$$12$$C_4\times C_2$$[3]^{4}$
2.8.12.1$x^{8} - 12 x^{7} + 52 x^{6} + 840 x^{5} + 3808 x^{4} + 10224 x^{3} + 17968 x^{2} + 20576 x + 15216$$2$$4$$12$$C_4\times C_2$$[3]^{4}$
\(5\) Copy content Toggle raw display 5.8.6.1$x^{8} + 16 x^{7} + 104 x^{6} + 352 x^{5} + 674 x^{4} + 784 x^{3} + 776 x^{2} + 928 x + 721$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
5.8.6.1$x^{8} + 16 x^{7} + 104 x^{6} + 352 x^{5} + 674 x^{4} + 784 x^{3} + 776 x^{2} + 928 x + 721$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
\(7\) Copy content Toggle raw display 7.8.4.1$x^{8} + 38 x^{6} + 8 x^{5} + 395 x^{4} - 72 x^{3} + 1026 x^{2} - 872 x + 401$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
7.8.4.1$x^{8} + 38 x^{6} + 8 x^{5} + 395 x^{4} - 72 x^{3} + 1026 x^{2} - 872 x + 401$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$