Normalized defining polynomial
\( x^{16} - 8 x^{15} + 48 x^{14} - 196 x^{13} + 656 x^{12} - 1752 x^{11} + 3898 x^{10} - 7148 x^{9} + 10467 x^{8} - 11960 x^{7} + 8262 x^{6} - 264 x^{5} + 372 x^{4} - 6272 x^{3} + 4376 x^{2} - 480 x + 16 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(23612624896000000000000=2^{24}\cdot 5^{12}\cdot 7^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.02$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(280=2^{3}\cdot 5\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{280}(1,·)$, $\chi_{280}(69,·)$, $\chi_{280}(13,·)$, $\chi_{280}(141,·)$, $\chi_{280}(209,·)$, $\chi_{280}(153,·)$, $\chi_{280}(29,·)$, $\chi_{280}(197,·)$, $\chi_{280}(97,·)$, $\chi_{280}(41,·)$, $\chi_{280}(237,·)$, $\chi_{280}(113,·)$, $\chi_{280}(181,·)$, $\chi_{280}(169,·)$, $\chi_{280}(57,·)$, $\chi_{280}(253,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{5}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{6}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{7}$, $\frac{1}{40} a^{12} + \frac{1}{10} a^{11} - \frac{3}{40} a^{10} - \frac{1}{40} a^{8} + \frac{1}{5} a^{7} - \frac{9}{40} a^{6} + \frac{1}{10} a^{5} - \frac{1}{10} a^{4} + \frac{2}{5} a^{3} + \frac{2}{5} a^{2} + \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{40} a^{13} + \frac{1}{40} a^{11} + \frac{1}{20} a^{10} - \frac{1}{40} a^{9} + \frac{1}{20} a^{8} - \frac{1}{40} a^{7} - \frac{1}{4} a^{6} + \frac{1}{20} a^{4} - \frac{1}{5} a^{3} + \frac{1}{10} a^{2} - \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{847507160} a^{14} - \frac{7}{847507160} a^{13} + \frac{8689041}{847507160} a^{12} - \frac{10426831}{169501432} a^{11} + \frac{40085}{936472} a^{10} + \frac{84634839}{847507160} a^{9} - \frac{456891}{8921128} a^{8} - \frac{60158713}{847507160} a^{7} - \frac{214483}{1389356} a^{6} - \frac{15079731}{105938395} a^{5} - \frac{35775893}{211876790} a^{4} + \frac{19241563}{42375358} a^{3} - \frac{104233}{585295} a^{2} + \frac{23346361}{105938395} a + \frac{7502711}{105938395}$, $\frac{1}{2801011163800} a^{15} + \frac{329}{560202232760} a^{14} - \frac{2336899791}{1400505581900} a^{13} + \frac{9725622913}{2801011163800} a^{12} - \frac{8407651763}{280101116380} a^{11} + \frac{274560552493}{2801011163800} a^{10} + \frac{92991838641}{1400505581900} a^{9} - \frac{214696714787}{2801011163800} a^{8} - \frac{343319650759}{2801011163800} a^{7} - \frac{45265879711}{1400505581900} a^{6} - \frac{65514602683}{350126395475} a^{5} - \frac{44892454613}{1400505581900} a^{4} - \frac{83081896592}{350126395475} a^{3} - \frac{29662287261}{70025279095} a^{2} - \frac{127620462993}{350126395475} a - \frac{173188401789}{350126395475}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{3162903}{423753580} a^{14} - \frac{22140321}{423753580} a^{13} + \frac{259143999}{847507160} a^{12} - \frac{122401956}{105938395} a^{11} + \frac{17468601}{4682360} a^{10} - \frac{3944147883}{423753580} a^{9} + \frac{877017393}{44605640} a^{8} - \frac{7071434721}{211876790} a^{7} + \frac{612123373}{13893560} a^{6} - \frac{9319400199}{211876790} a^{5} + \frac{6724200103}{423753580} a^{4} + \frac{1697853116}{105938395} a^{3} + \frac{20065621}{1170590} a^{2} - \frac{3064218226}{105938395} a + \frac{272112387}{105938395} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 34736.104354 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ |
| 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $7$ | 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |