Normalized defining polynomial
\( x^{16} - 2 x^{15} - 5 x^{14} + 20 x^{13} + 19 x^{12} + 88 x^{11} - 497 x^{10} + 10 x^{9} + 3711 x^{8} - 3712 x^{7} + 2758 x^{6} - 1816 x^{5} + 1084 x^{4} - 464 x^{3} + 184 x^{2} - 64 x + 16 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(23612624896000000000000=2^{24}\cdot 5^{12}\cdot 7^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.02$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(280=2^{3}\cdot 5\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{280}(1,·)$, $\chi_{280}(267,·)$, $\chi_{280}(139,·)$, $\chi_{280}(209,·)$, $\chi_{280}(83,·)$, $\chi_{280}(153,·)$, $\chi_{280}(27,·)$, $\chi_{280}(97,·)$, $\chi_{280}(99,·)$, $\chi_{280}(41,·)$, $\chi_{280}(43,·)$, $\chi_{280}(113,·)$, $\chi_{280}(211,·)$, $\chi_{280}(169,·)$, $\chi_{280}(57,·)$, $\chi_{280}(251,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{11} a^{9} - \frac{4}{11} a^{8} + \frac{5}{11} a^{7} + \frac{2}{11} a^{6} + \frac{3}{11} a^{5} - \frac{1}{11} a^{4} + \frac{4}{11} a^{3} - \frac{5}{11} a^{2} - \frac{2}{11} a - \frac{3}{11}$, $\frac{1}{22} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} + \frac{5}{11}$, $\frac{1}{22} a^{11} - \frac{1}{22} a^{9} + \frac{2}{11} a^{8} - \frac{5}{22} a^{7} - \frac{1}{11} a^{6} - \frac{3}{22} a^{5} - \frac{5}{11} a^{4} + \frac{7}{22} a^{3} - \frac{3}{11} a^{2} - \frac{5}{11} a - \frac{4}{11}$, $\frac{1}{44} a^{12} - \frac{1}{44} a^{10} - \frac{1}{22} a^{9} + \frac{19}{44} a^{8} - \frac{5}{22} a^{7} + \frac{7}{44} a^{6} + \frac{4}{11} a^{5} - \frac{9}{44} a^{4} + \frac{7}{22} a^{3} - \frac{1}{22} a^{2} + \frac{1}{11} a - \frac{1}{11}$, $\frac{1}{1254836} a^{13} + \frac{10955}{1254836} a^{12} - \frac{3445}{1254836} a^{11} + \frac{107}{6004} a^{10} + \frac{12713}{1254836} a^{9} - \frac{364297}{1254836} a^{8} - \frac{418763}{1254836} a^{7} - \frac{276315}{1254836} a^{6} - \frac{318569}{1254836} a^{5} - \frac{326345}{1254836} a^{4} + \frac{4336}{16511} a^{3} + \frac{251633}{627418} a^{2} + \frac{109034}{313709} a + \frac{7419}{313709}$, $\frac{1}{27606392} a^{14} - \frac{1}{6901598} a^{13} - \frac{13209}{1452968} a^{12} + \frac{236633}{13803196} a^{11} + \frac{57401}{27606392} a^{10} + \frac{627417}{13803196} a^{9} + \frac{11543749}{27606392} a^{8} + \frac{188411}{6901598} a^{7} + \frac{12791}{349448} a^{6} + \frac{3381067}{13803196} a^{5} - \frac{1003923}{6901598} a^{4} + \frac{1945019}{6901598} a^{3} + \frac{564667}{6901598} a^{2} + \frac{9569}{181621} a + \frac{828475}{3450799}$, $\frac{1}{27606392} a^{15} - \frac{1}{2509672} a^{13} + \frac{4391}{627418} a^{12} - \frac{53593}{2509672} a^{11} + \frac{68985}{3450799} a^{10} - \frac{12713}{2509672} a^{9} + \frac{339003}{1254836} a^{8} + \frac{418763}{2509672} a^{7} - \frac{166203}{627418} a^{6} - \frac{71648}{181621} a^{5} - \frac{307391}{1254836} a^{4} + \frac{12175}{33022} a^{3} - \frac{54519}{627418} a^{2} + \frac{31040}{313709} a + \frac{1338806}{3450799}$
Class group and class number
$C_{5}$, which has order $5$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{13159}{13803196} a^{15} + \frac{65795}{27606392} a^{14} - \frac{65795}{6901598} a^{13} - \frac{13159}{1452968} a^{12} + \frac{1145401}{13803196} a^{11} + \frac{6540023}{27606392} a^{10} - \frac{65795}{13803196} a^{9} - \frac{48833049}{27606392} a^{8} + \frac{6105776}{3450799} a^{7} + \frac{4179365}{349448} a^{6} + \frac{2987093}{3450799} a^{5} - \frac{3566089}{6901598} a^{4} + \frac{763222}{3450799} a^{3} - \frac{302657}{3450799} a^{2} + \frac{407678}{181621} a - \frac{26318}{3450799} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 85253.3675979 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | R | ${\href{/LocalNumberField/11.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.2 | $x^{8} + 2 x^{6} + 8 x^{4} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ |
| 2.8.12.2 | $x^{8} + 2 x^{6} + 8 x^{4} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $7$ | 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |