Properties

Label 16.0.23595621172...0000.5
Degree $16$
Signature $[0, 8]$
Discriminant $2^{32}\cdot 3^{8}\cdot 5^{8}\cdot 11^{8}$
Root discriminant $51.38$
Ramified primes $2, 3, 5, 11$
Class number $1536$ (GRH)
Class group $[2, 2, 8, 48]$ (GRH)
Galois group $C_2^4$ (as 16T3)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![344644, -360952, 541996, -416728, 355430, -206968, 123426, -54124, 23357, -7328, 2262, -476, 140, -56, 28, -8, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 8*x^15 + 28*x^14 - 56*x^13 + 140*x^12 - 476*x^11 + 2262*x^10 - 7328*x^9 + 23357*x^8 - 54124*x^7 + 123426*x^6 - 206968*x^5 + 355430*x^4 - 416728*x^3 + 541996*x^2 - 360952*x + 344644)
 
gp: K = bnfinit(x^16 - 8*x^15 + 28*x^14 - 56*x^13 + 140*x^12 - 476*x^11 + 2262*x^10 - 7328*x^9 + 23357*x^8 - 54124*x^7 + 123426*x^6 - 206968*x^5 + 355430*x^4 - 416728*x^3 + 541996*x^2 - 360952*x + 344644, 1)
 

Normalized defining polynomial

\( x^{16} - 8 x^{15} + 28 x^{14} - 56 x^{13} + 140 x^{12} - 476 x^{11} + 2262 x^{10} - 7328 x^{9} + 23357 x^{8} - 54124 x^{7} + 123426 x^{6} - 206968 x^{5} + 355430 x^{4} - 416728 x^{3} + 541996 x^{2} - 360952 x + 344644 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(2359562117249079705600000000=2^{32}\cdot 3^{8}\cdot 5^{8}\cdot 11^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $51.38$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(1320=2^{3}\cdot 3\cdot 5\cdot 11\)
Dirichlet character group:    $\lbrace$$\chi_{1320}(1,·)$, $\chi_{1320}(131,·)$, $\chi_{1320}(901,·)$, $\chi_{1320}(769,·)$, $\chi_{1320}(529,·)$, $\chi_{1320}(659,·)$, $\chi_{1320}(661,·)$, $\chi_{1320}(791,·)$, $\chi_{1320}(419,·)$, $\chi_{1320}(1189,·)$, $\chi_{1320}(1319,·)$, $\chi_{1320}(551,·)$, $\chi_{1320}(109,·)$, $\chi_{1320}(241,·)$, $\chi_{1320}(1079,·)$, $\chi_{1320}(1211,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6}$, $\frac{1}{14} a^{11} - \frac{1}{7} a^{10} - \frac{1}{14} a^{9} + \frac{1}{7} a^{8} - \frac{5}{14} a^{7} + \frac{3}{14} a^{5} + \frac{3}{7} a^{4} - \frac{1}{7} a^{3} + \frac{1}{7} a^{2} - \frac{1}{7} a + \frac{3}{7}$, $\frac{1}{210} a^{12} - \frac{1}{35} a^{11} - \frac{7}{30} a^{10} - \frac{1}{14} a^{9} - \frac{8}{35} a^{8} + \frac{1}{35} a^{7} - \frac{19}{42} a^{6} + \frac{1}{14} a^{5} + \frac{31}{70} a^{4} - \frac{17}{35} a^{3} + \frac{16}{105} a^{2} - \frac{1}{5} a + \frac{23}{105}$, $\frac{1}{210} a^{13} + \frac{1}{42} a^{11} + \frac{6}{35} a^{10} - \frac{3}{35} a^{9} + \frac{1}{70} a^{8} - \frac{89}{210} a^{7} - \frac{1}{7} a^{6} + \frac{11}{70} a^{5} + \frac{17}{70} a^{4} + \frac{8}{21} a^{3} - \frac{3}{7} a^{2} + \frac{17}{105} a - \frac{4}{35}$, $\frac{1}{17460757518330} a^{14} - \frac{1}{2494393931190} a^{13} - \frac{3704165704}{8730378759165} a^{12} + \frac{44449988539}{17460757518330} a^{11} - \frac{1102255041754}{8730378759165} a^{10} + \frac{314118904989}{2910126253055} a^{9} + \frac{13842545089}{105185286255} a^{8} - \frac{510004625231}{3492151503666} a^{7} - \frac{5343820548817}{17460757518330} a^{6} + \frac{1239395565}{2726113586} a^{5} + \frac{3886606846657}{8730378759165} a^{4} + \frac{182477667389}{1247196965595} a^{3} - \frac{95058105293}{1247196965595} a^{2} + \frac{3202038774247}{8730378759165} a + \frac{104041991726}{1746075751833}$, $\frac{1}{328663838767525590} a^{15} + \frac{4702}{164331919383762795} a^{14} + \frac{23515356940616}{54777306461254265} a^{13} - \frac{1438658328958}{2314534075827645} a^{12} + \frac{1967959943114693}{328663838767525590} a^{11} - \frac{236860899864497}{65732767753505118} a^{10} + \frac{2213238804693005}{9390395393357874} a^{9} - \frac{47465592648659947}{328663838767525590} a^{8} - \frac{76340623008688534}{164331919383762795} a^{7} - \frac{153301641946791827}{328663838767525590} a^{6} - \frac{2200493842423283}{4629068151655290} a^{5} - \frac{132176360268731}{925813630331058} a^{4} - \frac{3891974436304401}{7825329494464895} a^{3} + \frac{27103661212517909}{164331919383762795} a^{2} + \frac{66035305476120476}{164331919383762795} a + \frac{54630086171234372}{164331919383762795}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{8}\times C_{48}$, which has order $1536$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 15197.42445606848 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^4$ (as 16T3):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 16
The 16 conjugacy class representatives for $C_2^4$
Character table for $C_2^4$

Intermediate fields

\(\Q(\sqrt{-66}) \), \(\Q(\sqrt{-33}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-22}) \), \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{30}) \), \(\Q(\sqrt{-55}) \), \(\Q(\sqrt{-110}) \), \(\Q(\sqrt{15}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{-165}) \), \(\Q(\sqrt{-330}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{2}, \sqrt{-33})\), \(\Q(\sqrt{3}, \sqrt{-22})\), \(\Q(\sqrt{6}, \sqrt{-11})\), \(\Q(\sqrt{3}, \sqrt{-11})\), \(\Q(\sqrt{6}, \sqrt{-22})\), \(\Q(\sqrt{2}, \sqrt{3})\), \(\Q(\sqrt{2}, \sqrt{-11})\), \(\Q(\sqrt{30}, \sqrt{-55})\), \(\Q(\sqrt{15}, \sqrt{-66})\), \(\Q(\sqrt{10}, \sqrt{-66})\), \(\Q(\sqrt{5}, \sqrt{-66})\), \(\Q(\sqrt{30}, \sqrt{-33})\), \(\Q(\sqrt{15}, \sqrt{-33})\), \(\Q(\sqrt{10}, \sqrt{-33})\), \(\Q(\sqrt{5}, \sqrt{-33})\), \(\Q(\sqrt{2}, \sqrt{15})\), \(\Q(\sqrt{2}, \sqrt{-55})\), \(\Q(\sqrt{2}, \sqrt{5})\), \(\Q(\sqrt{2}, \sqrt{-165})\), \(\Q(\sqrt{3}, \sqrt{10})\), \(\Q(\sqrt{3}, \sqrt{-55})\), \(\Q(\sqrt{3}, \sqrt{-110})\), \(\Q(\sqrt{3}, \sqrt{5})\), \(\Q(\sqrt{-22}, \sqrt{30})\), \(\Q(\sqrt{10}, \sqrt{-22})\), \(\Q(\sqrt{5}, \sqrt{-22})\), \(\Q(\sqrt{15}, \sqrt{-22})\), \(\Q(\sqrt{-11}, \sqrt{30})\), \(\Q(\sqrt{5}, \sqrt{-11})\), \(\Q(\sqrt{10}, \sqrt{-11})\), \(\Q(\sqrt{-11}, \sqrt{15})\), \(\Q(\sqrt{5}, \sqrt{6})\), \(\Q(\sqrt{6}, \sqrt{-55})\), \(\Q(\sqrt{6}, \sqrt{-110})\), \(\Q(\sqrt{6}, \sqrt{10})\), 8.0.77720518656.5, 8.0.48575324160000.38, 8.0.48575324160000.216, 8.0.48575324160000.279, 8.0.48575324160000.283, 8.0.3035957760000.13, 8.0.48575324160000.31, 8.0.48575324160000.130, 8.0.189747360000.6, 8.0.48575324160000.96, 8.0.48575324160000.175, 8.8.3317760000.1, 8.0.48575324160000.190, 8.0.48575324160000.141, 8.0.37480960000.9

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ R ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.16.6$x^{8} + 4 x^{6} + 8 x^{2} + 4$$4$$2$$16$$C_2^3$$[2, 3]^{2}$
2.8.16.6$x^{8} + 4 x^{6} + 8 x^{2} + 4$$4$$2$$16$$C_2^3$$[2, 3]^{2}$
$3$3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$11$11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$