Normalized defining polynomial
\( x^{16} - 8 x^{15} + 30 x^{14} - 70 x^{13} - 86 x^{12} + 1062 x^{11} - 3974 x^{10} + 9420 x^{9} - 4164 x^{8} - 27038 x^{7} + 174382 x^{6} - 401814 x^{5} + 919138 x^{4} - 1212534 x^{3} + 1711428 x^{2} - 1165773 x + 1666681 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(235840746805304140638847775057=17^{13}\cdot 47^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $68.52$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{17} a^{8} - \frac{4}{17} a^{7} + \frac{7}{17} a^{6} - \frac{7}{17} a^{5} - \frac{2}{17} a^{4} - \frac{6}{17} a^{3} - \frac{7}{17} a^{2} + \frac{1}{17} a + \frac{1}{17}$, $\frac{1}{17} a^{9} + \frac{8}{17} a^{7} + \frac{4}{17} a^{6} + \frac{4}{17} a^{5} + \frac{3}{17} a^{4} + \frac{3}{17} a^{3} + \frac{7}{17} a^{2} + \frac{5}{17} a + \frac{4}{17}$, $\frac{1}{17} a^{10} + \frac{2}{17} a^{7} - \frac{1}{17} a^{6} + \frac{8}{17} a^{5} + \frac{2}{17} a^{4} + \frac{4}{17} a^{3} - \frac{7}{17} a^{2} - \frac{4}{17} a - \frac{8}{17}$, $\frac{1}{17} a^{11} + \frac{7}{17} a^{7} - \frac{6}{17} a^{6} - \frac{1}{17} a^{5} + \frac{8}{17} a^{4} + \frac{5}{17} a^{3} - \frac{7}{17} a^{2} + \frac{7}{17} a - \frac{2}{17}$, $\frac{1}{289} a^{12} - \frac{6}{289} a^{11} + \frac{8}{289} a^{10} - \frac{2}{289} a^{9} - \frac{2}{289} a^{8} + \frac{5}{289} a^{7} - \frac{78}{289} a^{6} + \frac{31}{289} a^{5} - \frac{134}{289} a^{4} - \frac{93}{289} a^{3} + \frac{42}{289} a^{2} - \frac{78}{289} a + \frac{101}{289}$, $\frac{1}{289} a^{13} + \frac{6}{289} a^{11} - \frac{5}{289} a^{10} + \frac{3}{289} a^{9} - \frac{7}{289} a^{8} - \frac{65}{289} a^{7} + \frac{56}{289} a^{6} - \frac{33}{289} a^{5} - \frac{98}{289} a^{4} + \frac{79}{289} a^{3} + \frac{123}{289} a^{2} - \frac{129}{289} a - \frac{142}{289}$, $\frac{1}{1327884011425177} a^{14} - \frac{7}{1327884011425177} a^{13} - \frac{961584650892}{1327884011425177} a^{12} + \frac{5769507905443}{1327884011425177} a^{11} - \frac{23020146191414}{1327884011425177} a^{10} - \frac{15897249044472}{1327884011425177} a^{9} - \frac{27981566374437}{1327884011425177} a^{8} + \frac{505106819329182}{1327884011425177} a^{7} + \frac{37499511870978}{78110824201481} a^{6} + \frac{383969253600559}{1327884011425177} a^{5} - \frac{22967936663833}{78110824201481} a^{4} + \frac{364169638247656}{1327884011425177} a^{3} + \frac{358461125175984}{1327884011425177} a^{2} - \frac{546879389295372}{1327884011425177} a + \frac{421717411512}{1028570109547}$, $\frac{1}{5753721421505291941} a^{15} + \frac{127}{338454201265017173} a^{14} - \frac{463551166601416}{821960203072184563} a^{13} - \frac{128680818362803}{821960203072184563} a^{12} + \frac{76092702911922002}{5753721421505291941} a^{11} - \frac{133915591231711166}{5753721421505291941} a^{10} + \frac{37579730688888658}{5753721421505291941} a^{9} - \frac{18298792326220483}{821960203072184563} a^{8} - \frac{1675055826763323906}{5753721421505291941} a^{7} - \frac{304986860608024633}{821960203072184563} a^{6} - \frac{673729438566786310}{5753721421505291941} a^{5} - \frac{485895181222195508}{5753721421505291941} a^{4} + \frac{360142277283241263}{5753721421505291941} a^{3} + \frac{82517699831527893}{5753721421505291941} a^{2} - \frac{128585837196926453}{5753721421505291941} a + \frac{1480370674199908}{4456794284667151}$
Class group and class number
$C_{4}\times C_{20}$, which has order $80$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1324428.56403 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.D_4:C_4$ (as 16T289):
| A solvable group of order 128 |
| The 44 conjugacy class representatives for $C_4.D_4:C_4$ |
| Character table for $C_4.D_4:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-47}) \), 4.0.37553.1, 8.0.6928449225617.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{8}$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.4.3.2 | $x^{4} - 153$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 17.4.3.2 | $x^{4} - 153$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17.8.7.1 | $x^{8} - 1377$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| $47$ | 47.8.4.1 | $x^{8} + 172302 x^{4} - 103823 x^{2} + 7421994801$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 47.8.4.1 | $x^{8} + 172302 x^{4} - 103823 x^{2} + 7421994801$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |