Normalized defining polynomial
\( x^{16} - 8 x^{15} + 45 x^{14} - 107 x^{13} + 261 x^{12} - 199 x^{11} + 479 x^{10} + 5471 x^{9} - 15947 x^{8} + 6973 x^{7} + 98504 x^{6} - 264952 x^{5} + 78771 x^{4} + 150510 x^{3} + 1483 x^{2} + 12019 x + 62867 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(235840746805304140638847775057=17^{13}\cdot 47^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $68.52$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{742} a^{14} - \frac{25}{106} a^{13} - \frac{2}{371} a^{12} + \frac{1}{742} a^{11} + \frac{325}{742} a^{10} + \frac{7}{53} a^{9} - \frac{30}{371} a^{8} - \frac{1}{2} a^{7} + \frac{66}{371} a^{6} - \frac{33}{106} a^{5} - \frac{3}{106} a^{4} - \frac{92}{371} a^{3} - \frac{155}{371} a^{2} + \frac{323}{742} a + \frac{19}{106}$, $\frac{1}{54288164559040025611206776688250122409934} a^{15} - \frac{8534958336904499919716699026156067491}{27144082279520012805603388344125061204967} a^{14} + \frac{10019511553539333967660713369648345956269}{54288164559040025611206776688250122409934} a^{13} + \frac{10566945845516675240368374941160980374321}{54288164559040025611206776688250122409934} a^{12} + \frac{3361346294714685394639367258773032196154}{27144082279520012805603388344125061204967} a^{11} - \frac{10088883126689886404178603528234838218547}{54288164559040025611206776688250122409934} a^{10} + \frac{4847850185696198191902522478030145717435}{27144082279520012805603388344125061204967} a^{9} + \frac{13548569806437061798230016485279204771945}{54288164559040025611206776688250122409934} a^{8} + \frac{6884765725892592289214019421554543014587}{54288164559040025611206776688250122409934} a^{7} - \frac{13602236605751894639329651069117082306495}{54288164559040025611206776688250122409934} a^{6} - \frac{29036647922098102031955704538335102866}{3877726039931430400800484049160723029281} a^{5} + \frac{18448624245468431651021092932360024482361}{54288164559040025611206776688250122409934} a^{4} - \frac{661094458881513662754225925367745925811}{3877726039931430400800484049160723029281} a^{3} + \frac{8294813804646786975095615108565448011401}{54288164559040025611206776688250122409934} a^{2} + \frac{10427419268789980137254976993190174934299}{27144082279520012805603388344125061204967} a - \frac{1298590168313355072023805438384439640527}{7755452079862860801600968098321446058562}$
Class group and class number
$C_{4}\times C_{20}$, which has order $80$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1688424.44596 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.D_4:C_4$ (as 16T260):
| A solvable group of order 128 |
| The 32 conjugacy class representatives for $C_4.D_4:C_4$ |
| Character table for $C_4.D_4:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-47}) \), 4.0.37553.1, 8.0.6928449225617.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.4.3.2 | $x^{4} - 153$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 17.4.3.2 | $x^{4} - 153$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17.8.7.1 | $x^{8} - 1377$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| $47$ | 47.8.4.1 | $x^{8} + 172302 x^{4} - 103823 x^{2} + 7421994801$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 47.8.4.1 | $x^{8} + 172302 x^{4} - 103823 x^{2} + 7421994801$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |