Normalized defining polynomial
\( x^{16} - 8 x^{15} + 24 x^{14} - 28 x^{13} - 38 x^{12} + 228 x^{11} - 360 x^{10} - 4 x^{9} + 1013 x^{8} - 2092 x^{7} + 2316 x^{6} - 1532 x^{5} + 776 x^{4} - 492 x^{3} + 580 x^{2} - 384 x + 89 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(235690082176551878656=2^{40}\cdot 11^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{15} a^{10} - \frac{1}{3} a^{9} - \frac{7}{15} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{4}{15} a^{2} - \frac{2}{15}$, $\frac{1}{15} a^{11} + \frac{1}{3} a^{9} - \frac{7}{15} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{2}{5} a^{3} - \frac{1}{3} a^{2} - \frac{2}{15} a + \frac{1}{3}$, $\frac{1}{45} a^{12} + \frac{1}{45} a^{10} - \frac{2}{9} a^{9} - \frac{7}{45} a^{8} - \frac{4}{9} a^{7} + \frac{8}{45} a^{6} + \frac{2}{9} a^{5} - \frac{4}{45} a^{4} + \frac{1}{9} a^{3} - \frac{16}{45} a^{2} + \frac{4}{9} a + \frac{8}{45}$, $\frac{1}{315} a^{13} - \frac{1}{105} a^{12} - \frac{1}{63} a^{11} + \frac{8}{315} a^{10} + \frac{113}{315} a^{9} - \frac{44}{315} a^{8} + \frac{4}{63} a^{7} + \frac{94}{315} a^{6} - \frac{4}{315} a^{5} + \frac{32}{315} a^{4} + \frac{83}{315} a^{3} - \frac{31}{315} a^{2} + \frac{19}{63} a - \frac{47}{105}$, $\frac{1}{6139665} a^{14} - \frac{1}{877095} a^{13} - \frac{260}{58473} a^{12} + \frac{23413}{877095} a^{11} + \frac{153311}{6139665} a^{10} - \frac{756352}{2046555} a^{9} + \frac{7429}{175419} a^{8} + \frac{299719}{877095} a^{7} - \frac{328145}{1227933} a^{6} - \frac{1474747}{6139665} a^{5} + \frac{295138}{6139665} a^{4} - \frac{95554}{1227933} a^{3} - \frac{2200217}{6139665} a^{2} - \frac{1020232}{6139665} a - \frac{24124}{68985}$, $\frac{1}{485033535} a^{15} + \frac{32}{485033535} a^{14} + \frac{23523}{17964205} a^{13} - \frac{1041664}{97006707} a^{12} - \frac{46472}{5449815} a^{11} + \frac{611041}{23096835} a^{10} + \frac{144918173}{485033535} a^{9} + \frac{9686681}{97006707} a^{8} - \frac{189261022}{485033535} a^{7} - \frac{138378853}{485033535} a^{6} + \frac{242337184}{485033535} a^{5} - \frac{124254419}{485033535} a^{4} + \frac{144138577}{485033535} a^{3} + \frac{4833874}{13858101} a^{2} + \frac{142858087}{485033535} a + \frac{97133}{363321}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{39932}{1816605} a^{15} - \frac{5013737}{32335569} a^{14} + \frac{12114134}{32335569} a^{13} - \frac{815100}{3592841} a^{12} - \frac{58727776}{53892615} a^{11} + \frac{631065469}{161677845} a^{10} - \frac{126187037}{32335569} a^{9} - \frac{15390757}{3592841} a^{8} + \frac{318824658}{17964205} a^{7} - \frac{4387474013}{161677845} a^{6} + \frac{3811794929}{161677845} a^{5} - \frac{366009628}{32335569} a^{4} + \frac{1126492858}{161677845} a^{3} - \frac{652598671}{161677845} a^{2} + \frac{143273617}{23096835} a - \frac{3514897}{1816605} \) (order $8$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16135.3882167 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $Q_8 : C_2$ |
| Character table for $Q_8 : C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $11$ | 11.8.4.1 | $x^{8} + 484 x^{4} - 1331 x^{2} + 58564$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 11.8.4.1 | $x^{8} + 484 x^{4} - 1331 x^{2} + 58564$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |