Normalized defining polynomial
\( x^{16} - 2 x^{15} + 11 x^{14} - 44 x^{13} + 94 x^{12} - 168 x^{11} + 187 x^{10} + 14 x^{9} - 59 x^{8} + 162 x^{7} - 209 x^{6} - 540 x^{5} + 3602 x^{4} - 6308 x^{3} + 5911 x^{2} - 9958 x + 8957 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(23563340466869924558542849=17^{10}\cdot 43^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{26} a^{10} + \frac{2}{13} a^{9} + \frac{1}{13} a^{8} - \frac{1}{13} a^{7} - \frac{4}{13} a^{6} - \frac{3}{26} a^{5} + \frac{4}{13} a^{4} - \frac{4}{13} a^{3} + \frac{2}{13} a^{2} + \frac{1}{13} a - \frac{1}{2}$, $\frac{1}{26} a^{11} - \frac{1}{26} a^{9} + \frac{3}{26} a^{8} - \frac{5}{13} a^{6} + \frac{7}{26} a^{5} - \frac{1}{26} a^{4} + \frac{5}{13} a^{3} - \frac{1}{26} a^{2} - \frac{4}{13} a$, $\frac{1}{26} a^{12} - \frac{3}{13} a^{9} + \frac{1}{13} a^{8} + \frac{1}{26} a^{7} + \frac{6}{13} a^{6} - \frac{2}{13} a^{5} - \frac{4}{13} a^{4} + \frac{2}{13} a^{3} + \frac{9}{26} a^{2} + \frac{1}{13} a$, $\frac{1}{338} a^{13} + \frac{1}{169} a^{12} + \frac{5}{338} a^{11} - \frac{1}{338} a^{10} + \frac{9}{169} a^{9} - \frac{24}{169} a^{8} + \frac{95}{338} a^{7} + \frac{47}{338} a^{6} + \frac{2}{169} a^{5} + \frac{75}{338} a^{4} - \frac{84}{169} a^{3} - \frac{2}{169} a^{2} - \frac{6}{13} a$, $\frac{1}{4394} a^{14} + \frac{5}{4394} a^{13} + \frac{38}{2197} a^{12} - \frac{19}{2197} a^{11} + \frac{40}{2197} a^{10} + \frac{471}{2197} a^{9} + \frac{450}{2197} a^{8} - \frac{627}{2197} a^{7} - \frac{1779}{4394} a^{6} - \frac{225}{4394} a^{5} + \frac{308}{2197} a^{4} - \frac{2133}{4394} a^{3} - \frac{623}{4394} a^{2} + \frac{29}{338} a - \frac{5}{13}$, $\frac{1}{14161815979244056526} a^{15} + \frac{21121952952559}{7080907989622028263} a^{14} + \frac{613728338906555}{1089370459941850502} a^{13} + \frac{104275064303240891}{14161815979244056526} a^{12} - \frac{109242582860330339}{7080907989622028263} a^{11} - \frac{135794702363224002}{7080907989622028263} a^{10} + \frac{3264369645936713127}{14161815979244056526} a^{9} - \frac{1570229260983376445}{14161815979244056526} a^{8} + \frac{3189494830395834212}{7080907989622028263} a^{7} + \frac{6615105696466916261}{14161815979244056526} a^{6} + \frac{1707215650273449865}{7080907989622028263} a^{5} - \frac{1474373258638717209}{7080907989622028263} a^{4} - \frac{1605117535078417686}{7080907989622028263} a^{3} - \frac{1459661218797321558}{7080907989622028263} a^{2} - \frac{106269500696947057}{544685229970925251} a + \frac{17497279125983928}{41898863843917327}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 964651.296901 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\wr C_2$ (as 16T42):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_4\wr C_2$ |
| Character table for $C_4\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-43}) \), \(\Q(\sqrt{-731}) \), 4.2.12427.1 x2, 4.0.31433.1 x2, \(\Q(\sqrt{17}, \sqrt{-43})\), 8.0.16796569313.1, 8.0.4854208531457.1, 8.0.285541678321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.1.0.1}{1} }^{16}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 17.8.6.2 | $x^{8} + 85 x^{4} + 2601$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $43$ | 43.8.4.1 | $x^{8} + 73960 x^{4} - 79507 x^{2} + 1367520400$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 43.8.4.1 | $x^{8} + 73960 x^{4} - 79507 x^{2} + 1367520400$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |