Normalized defining polynomial
\( x^{16} + 54 x^{14} - 4199 x^{12} - 70442 x^{10} + 2952056 x^{8} + 71800669 x^{6} + 642125261 x^{4} + 2526369250 x^{2} + 1426950625 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(235180090762073460609416758748830068601=47^{8}\cdot 61^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $250.16$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $47, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{10} a^{11} + \frac{1}{10} a^{7} - \frac{1}{2} a^{6} - \frac{1}{10} a^{5} - \frac{1}{2} a^{4} - \frac{1}{10} a$, $\frac{1}{50} a^{12} + \frac{1}{50} a^{8} - \frac{1}{2} a^{7} - \frac{21}{50} a^{6} - \frac{1}{2} a^{5} - \frac{1}{5} a^{4} + \frac{9}{50} a^{2}$, $\frac{1}{250} a^{13} - \frac{49}{250} a^{9} + \frac{79}{250} a^{7} - \frac{6}{25} a^{5} - \frac{58}{125} a^{3} - \frac{1}{2} a^{2} - \frac{2}{5} a - \frac{1}{2}$, $\frac{1}{48145432173454973707493744401750} a^{14} - \frac{47152860329090684462321892933}{9629086434690994741498748880350} a^{12} - \frac{2763116013626873910312463839462}{24072716086727486853746872200875} a^{10} - \frac{1018075157488432467853654544961}{48145432173454973707493744401750} a^{8} - \frac{1}{2} a^{7} + \frac{941916050557681882495423410531}{9629086434690994741498748880350} a^{6} - \frac{19580892689323881613004281390341}{48145432173454973707493744401750} a^{4} - \frac{1}{2} a^{3} - \frac{63449442271328131237222028421}{4814543217345497370749374440175} a^{2} - \frac{1}{2} a - \frac{62746959987596562022397528495}{192581728693819894829974977607}$, $\frac{1}{72747748014090465272023047791044250} a^{15} + \frac{4959972085710226581117027524849}{14549549602818093054404609558208850} a^{13} + \frac{490371719359332481366560639659101}{72747748014090465272023047791044250} a^{11} - \frac{7992169324050535301940813460518963}{36373874007045232636011523895522125} a^{9} - \frac{192795303015425132316459404062111}{14549549602818093054404609558208850} a^{7} + \frac{194827640392521697450346273012267}{36373874007045232636011523895522125} a^{5} - \frac{1}{2} a^{4} + \frac{3426350667478172240683677579555323}{7274774801409046527202304779104425} a^{3} + \frac{73059903832407397120108478825792}{1454954960281809305440460955820885} a - \frac{1}{2}$
Class group and class number
$C_{30}$, which has order $30$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 110204009551 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_4$ (as 16T36):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^3.C_4$ |
| Character table for $C_2^3.C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $47$ | 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.4.2.1 | $x^{4} + 1175 x^{2} + 373321$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 47.4.2.1 | $x^{4} + 1175 x^{2} + 373321$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $61$ | 61.8.7.2 | $x^{8} - 244$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 61.8.7.2 | $x^{8} - 244$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |