Normalized defining polynomial
\( x^{16} - 8 x^{15} + 412 x^{14} - 1764 x^{13} + 63806 x^{12} - 47388 x^{11} + 4670180 x^{10} + 16709548 x^{9} + 173831769 x^{8} + 1709712244 x^{7} + 5006084840 x^{6} + 60097040484 x^{5} + 247939978456 x^{4} + 656088145268 x^{3} + 8329269294588 x^{2} - 1393015120376 x + 75558851901361 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(23462097005834430807696998400000000000000=2^{40}\cdot 3^{8}\cdot 5^{14}\cdot 41^{2}\cdot 563021^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $333.54$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 41, 563021$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{8494936724122784322334003380833564417280170164953981588457035365937919517618394761892421141} a^{15} + \frac{2828713803569571153646555023008252210477894458125350426668406204066679321714262339432308519}{8494936724122784322334003380833564417280170164953981588457035365937919517618394761892421141} a^{14} + \frac{3448832706706279014098178373223418232189929131710783506386936094652005027574006279109365202}{8494936724122784322334003380833564417280170164953981588457035365937919517618394761892421141} a^{13} - \frac{169045081672973516745935565080059082870354980323162004732776339515787851848091604062955919}{8494936724122784322334003380833564417280170164953981588457035365937919517618394761892421141} a^{12} + \frac{3849590442171742719744911835455199806779517807771156360092192191745854840460000111404599587}{8494936724122784322334003380833564417280170164953981588457035365937919517618394761892421141} a^{11} - \frac{1838507937965566656488867691785830087142583335211135376583663440132943929453710690585032934}{8494936724122784322334003380833564417280170164953981588457035365937919517618394761892421141} a^{10} + \frac{735061268128091951020686293144428153491559517175178332720018204382192582430572350385256434}{8494936724122784322334003380833564417280170164953981588457035365937919517618394761892421141} a^{9} + \frac{3023213224220881185274979552693337595010994614032309363360697751022080198429505884432478528}{8494936724122784322334003380833564417280170164953981588457035365937919517618394761892421141} a^{8} - \frac{2714834320495003175968119064505049682689983817161008647666731607841325499968135313935053574}{8494936724122784322334003380833564417280170164953981588457035365937919517618394761892421141} a^{7} - \frac{3887891738118650174362369044193015152977435917625615888161842264246095913408986012596743531}{8494936724122784322334003380833564417280170164953981588457035365937919517618394761892421141} a^{6} + \frac{450145096785918196081310437612231985824058913413200663442732832969045402667636537939281523}{8494936724122784322334003380833564417280170164953981588457035365937919517618394761892421141} a^{5} + \frac{3221474705452628082821438675004186246986688710972031420788982796315264494818439159642275837}{8494936724122784322334003380833564417280170164953981588457035365937919517618394761892421141} a^{4} + \frac{910279621394114822522267333498261725818178953942346695582043983918130773500423892004010473}{8494936724122784322334003380833564417280170164953981588457035365937919517618394761892421141} a^{3} - \frac{2319573295161477018978486747016682354131530082850056619882031702047417410978507932525889199}{8494936724122784322334003380833564417280170164953981588457035365937919517618394761892421141} a^{2} + \frac{1070530460921324098555938968322796596933555989538372782477454324980741821362938111228268670}{8494936724122784322334003380833564417280170164953981588457035365937919517618394761892421141} a - \frac{3341981283786330103549814050176211116680382159232058299961873032519866156362224111717479517}{8494936724122784322334003380833564417280170164953981588457035365937919517618394761892421141}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}\times C_{31435684}$, which has order $502970944$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 114709.055882 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 49 conjugacy class representatives for t16n1162 |
| Character table for t16n1162 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{20})^+\), 8.8.414720000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.4.2 | $x^{8} - 27 x^{2} + 162$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ |
| 3.8.4.2 | $x^{8} - 27 x^{2} + 162$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.8.7.2 | $x^{8} - 20$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 5.8.7.2 | $x^{8} - 20$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $41$ | $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.2.1.1 | $x^{2} - 41$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.2.1.1 | $x^{2} - 41$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 563021 | Data not computed | ||||||