Properties

Label 16.0.23452051025390625.1
Degree $16$
Signature $[0, 8]$
Discriminant $3^{8}\cdot 5^{12}\cdot 11^{4}$
Root discriminant $10.55$
Ramified primes $3, 5, 11$
Class number $1$
Class group Trivial
Galois group $C_2 \times (C_2^2:C_4)$ (as 16T21)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 1, 2, 5, 0, -6, 16, -15, 9, 5, -11, 12, -5, 0, 3, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 2*x^15 + 3*x^14 - 5*x^12 + 12*x^11 - 11*x^10 + 5*x^9 + 9*x^8 - 15*x^7 + 16*x^6 - 6*x^5 + 5*x^3 + 2*x^2 + x + 1)
 
gp: K = bnfinit(x^16 - 2*x^15 + 3*x^14 - 5*x^12 + 12*x^11 - 11*x^10 + 5*x^9 + 9*x^8 - 15*x^7 + 16*x^6 - 6*x^5 + 5*x^3 + 2*x^2 + x + 1, 1)
 

Normalized defining polynomial

\( x^{16} - 2 x^{15} + 3 x^{14} - 5 x^{12} + 12 x^{11} - 11 x^{10} + 5 x^{9} + 9 x^{8} - 15 x^{7} + 16 x^{6} - 6 x^{5} + 5 x^{3} + 2 x^{2} + x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(23452051025390625=3^{8}\cdot 5^{12}\cdot 11^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $10.55$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 5, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{14} + \frac{1}{4} a^{10} - \frac{1}{2} a^{8} - \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{10568} a^{15} + \frac{283}{10568} a^{14} + \frac{699}{5284} a^{13} + \frac{1065}{5284} a^{12} - \frac{615}{10568} a^{11} + \frac{4393}{10568} a^{10} + \frac{2485}{5284} a^{9} + \frac{343}{10568} a^{8} - \frac{329}{1321} a^{7} + \frac{193}{10568} a^{6} + \frac{2181}{10568} a^{5} + \frac{3351}{10568} a^{4} - \frac{1369}{10568} a^{3} + \frac{107}{1321} a^{2} - \frac{2193}{5284} a - \frac{2985}{10568}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{6155}{10568} a^{15} + \frac{12423}{10568} a^{14} - \frac{9095}{5284} a^{13} - \frac{273}{5284} a^{12} + \frac{33685}{10568} a^{11} - \frac{74663}{10568} a^{10} + \frac{33709}{5284} a^{9} - \frac{23985}{10568} a^{8} - \frac{14727}{2642} a^{7} + \frac{96097}{10568} a^{6} - \frac{92523}{10568} a^{5} + \frac{35035}{10568} a^{4} + \frac{3499}{10568} a^{3} - \frac{3369}{1321} a^{2} - \frac{5347}{5284} a - \frac{5077}{10568} \) (order $30$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 368.732205225 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_2^2:C_4$ (as 16T21):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 32
The 20 conjugacy class representatives for $C_2 \times (C_2^2:C_4)$
Character table for $C_2 \times (C_2^2:C_4)$

Intermediate fields

\(\Q(\sqrt{-15}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-3}) \), \(\Q(\zeta_{5})\), \(\Q(\zeta_{15})^+\), 4.2.12375.1, 4.2.1375.1, \(\Q(\sqrt{-3}, \sqrt{5})\), 4.2.2475.1, 4.2.275.1, 8.0.6125625.1, \(\Q(\zeta_{15})\), 8.0.153140625.1, 8.0.153140625.2, 8.4.153140625.1, 8.0.1890625.1, 8.4.153140625.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 16 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ R R ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$5$5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
$11$11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$