Normalized defining polynomial
\( x^{16} - x^{15} + 52 x^{14} - 52 x^{13} + 1123 x^{12} - 1123 x^{11} + 13057 x^{10} - 13057 x^{9} + 88792 x^{8} - 88792 x^{7} + 361438 x^{6} - 361438 x^{5} + 881944 x^{4} - 881944 x^{3} + 1328092 x^{2} - 1328092 x + 1439629 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2334966419615122175401076753=13^{8}\cdot 17^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(221=13\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{221}(1,·)$, $\chi_{221}(66,·)$, $\chi_{221}(196,·)$, $\chi_{221}(129,·)$, $\chi_{221}(12,·)$, $\chi_{221}(194,·)$, $\chi_{221}(142,·)$, $\chi_{221}(207,·)$, $\chi_{221}(144,·)$, $\chi_{221}(90,·)$, $\chi_{221}(157,·)$, $\chi_{221}(116,·)$, $\chi_{221}(53,·)$, $\chi_{221}(118,·)$, $\chi_{221}(183,·)$, $\chi_{221}(181,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{399331} a^{9} + \frac{80968}{399331} a^{8} + \frac{27}{399331} a^{7} - \frac{53423}{399331} a^{6} + \frac{243}{399331} a^{5} + \frac{198324}{399331} a^{4} + \frac{810}{399331} a^{3} - \frac{162952}{399331} a^{2} + \frac{729}{399331} a - \frac{61107}{399331}$, $\frac{1}{399331} a^{10} + \frac{30}{399331} a^{8} + \frac{156427}{399331} a^{7} + \frac{315}{399331} a^{6} + \frac{90319}{399331} a^{5} + \frac{1350}{399331} a^{4} + \frac{142583}{399331} a^{3} + \frac{2025}{399331} a^{2} + \frac{14209}{399331} a + \frac{486}{399331}$, $\frac{1}{399331} a^{11} + \frac{123373}{399331} a^{8} - \frac{495}{399331} a^{7} + \frac{95685}{399331} a^{6} - \frac{5940}{399331} a^{5} + \frac{182828}{399331} a^{4} - \frac{22275}{399331} a^{3} + \frac{110797}{399331} a^{2} - \frac{21384}{399331} a - \frac{163445}{399331}$, $\frac{1}{399331} a^{12} - \frac{594}{399331} a^{8} - \frac{40738}{399331} a^{7} - \frac{8316}{399331} a^{6} + \frac{153014}{399331} a^{5} - \frac{40095}{399331} a^{4} + \frac{11417}{399331} a^{3} - \frac{64152}{399331} a^{2} + \frac{146444}{399331} a - \frac{16038}{399331}$, $\frac{1}{399331} a^{13} + \frac{134534}{399331} a^{8} + \frac{7722}{399331} a^{7} - \frac{33099}{399331} a^{6} + \frac{104247}{399331} a^{5} + \frac{13228}{399331} a^{4} + \frac{17657}{399331} a^{3} - \frac{8942}{399331} a^{2} + \frac{17657}{399331} a + \frac{41563}{399331}$, $\frac{1}{399331} a^{14} + \frac{9828}{399331} a^{8} - \frac{71538}{399331} a^{7} + \frac{154791}{399331} a^{6} + \frac{66608}{399331} a^{5} - \frac{2594}{399331} a^{4} + \frac{35881}{399331} a^{3} + \frac{128787}{399331} a^{2} - \frac{197628}{399331} a - \frac{58159}{399331}$, $\frac{1}{399331} a^{15} + \frac{41641}{399331} a^{8} - \frac{110565}{399331} a^{7} - \frac{12413}{399331} a^{6} + \frac{5188}{399331} a^{5} + \frac{42220}{399331} a^{4} + \frac{154727}{399331} a^{3} - \frac{22682}{399331} a^{2} - \frac{34813}{399331} a - \frac{34228}{399331}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{226}$, which has order $1808$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3640.01221338 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 16 |
| The 16 conjugacy class representatives for $C_{16}$ |
| Character table for $C_{16}$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | R | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 17 | Data not computed | ||||||