Normalized defining polynomial
\( x^{16} - 6 x^{15} + 52 x^{14} - 194 x^{13} + 1215 x^{12} - 3600 x^{11} + 11703 x^{10} - 54366 x^{9} + 49958 x^{8} - 372244 x^{7} + 594500 x^{6} - 41789 x^{5} + 5779990 x^{4} + 5086513 x^{3} + 14900229 x^{2} + 6921894 x + 9032369 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(23302078379314905029568288023161=23^{8}\cdot 29^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $91.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{5} a^{10} - \frac{2}{5} a^{9} - \frac{1}{5} a^{8} - \frac{1}{5} a^{7} - \frac{2}{5} a^{6} - \frac{2}{5} a^{5} + \frac{1}{5} a^{4} - \frac{2}{5} a^{2} - \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{11} + \frac{2}{5} a^{8} + \frac{1}{5} a^{7} - \frac{1}{5} a^{6} + \frac{2}{5} a^{5} + \frac{2}{5} a^{4} - \frac{2}{5} a^{3} + \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{805} a^{12} + \frac{7}{115} a^{11} - \frac{10}{161} a^{10} + \frac{272}{805} a^{9} - \frac{3}{115} a^{8} - \frac{267}{805} a^{7} + \frac{363}{805} a^{6} - \frac{12}{161} a^{5} - \frac{129}{805} a^{4} + \frac{27}{805} a^{3} - \frac{44}{115} a^{2} - \frac{94}{805} a + \frac{187}{805}$, $\frac{1}{805} a^{13} - \frac{36}{805} a^{11} - \frac{3}{161} a^{10} + \frac{5}{23} a^{9} + \frac{279}{805} a^{8} + \frac{83}{805} a^{7} - \frac{298}{805} a^{6} + \frac{47}{161} a^{5} + \frac{17}{35} a^{4} - \frac{3}{115} a^{3} + \frac{347}{805} a^{2} + \frac{57}{161} a + \frac{2}{115}$, $\frac{1}{467705} a^{14} + \frac{82}{467705} a^{13} - \frac{48}{467705} a^{12} + \frac{5139}{467705} a^{11} - \frac{1836}{66815} a^{10} - \frac{78151}{467705} a^{9} + \frac{187433}{467705} a^{8} - \frac{70627}{467705} a^{7} + \frac{186378}{467705} a^{6} - \frac{60602}{467705} a^{5} + \frac{8843}{93541} a^{4} + \frac{133863}{467705} a^{3} - \frac{232571}{467705} a^{2} + \frac{107427}{467705} a + \frac{62338}{467705}$, $\frac{1}{114325250336505704426028322913032154615} a^{15} - \frac{78802051586700202525755532416}{101442103226713136136671093977845745} a^{14} - \frac{15579855831851505314242378636505527}{114325250336505704426028322913032154615} a^{13} + \frac{55553308264086454411682204687136971}{114325250336505704426028322913032154615} a^{12} - \frac{8677962072326929297117200041860740026}{114325250336505704426028322913032154615} a^{11} - \frac{8788680292608497353766800225170168106}{114325250336505704426028322913032154615} a^{10} + \frac{1684310736346531047939745881161937923}{114325250336505704426028322913032154615} a^{9} - \frac{42158285303916191962548276867793543283}{114325250336505704426028322913032154615} a^{8} - \frac{28948811883109023125472582575477606323}{114325250336505704426028322913032154615} a^{7} + \frac{50391952985640805426184728514747741129}{114325250336505704426028322913032154615} a^{6} + \frac{21154424526221728826181332055271208531}{114325250336505704426028322913032154615} a^{5} + \frac{8607714137450638564839370716354009921}{114325250336505704426028322913032154615} a^{4} - \frac{25754925879870112966605741243979578309}{114325250336505704426028322913032154615} a^{3} - \frac{3820294442187554036887280254789634976}{22865050067301140885205664582606430923} a^{2} - \frac{154709945209740551919250447839447299}{22865050067301140885205664582606430923} a - \frac{2099098523246013440008871744512851415}{22865050067301140885205664582606430923}$
Class group and class number
$C_{6}$, which has order $6$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 222324222.161 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_4$ (as 16T36):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^3.C_4$ |
| Character table for $C_2^3.C_4$ |
Intermediate fields
| \(\Q(\sqrt{29}) \), \(\Q(\sqrt{-667}) \), \(\Q(\sqrt{-23}) \), 4.0.24389.1, 4.4.12901781.1, \(\Q(\sqrt{-23}, \sqrt{29})\), 8.0.9125184567461.1 x2, 8.4.4827222636186869.1 x2, 8.0.166455952971961.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | R | R | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $23$ | 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $29$ | 29.8.7.2 | $x^{8} - 116$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 29.8.7.2 | $x^{8} - 116$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |