Properties

Label 16.0.23241017135...0000.1
Degree $16$
Signature $[0, 8]$
Discriminant $2^{28}\cdot 5^{8}\cdot 53^{6}$
Root discriminant $33.33$
Ramified primes $2, 5, 53$
Class number $4$ (GRH)
Class group $[4]$ (GRH)
Galois group $Q_8:C_2^2.D_6$ (as 16T754)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![137, -220, 862, -1626, 1484, -188, -1178, 1014, -110, -308, 250, -38, -50, 24, -2, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 2*x^15 - 2*x^14 + 24*x^13 - 50*x^12 - 38*x^11 + 250*x^10 - 308*x^9 - 110*x^8 + 1014*x^7 - 1178*x^6 - 188*x^5 + 1484*x^4 - 1626*x^3 + 862*x^2 - 220*x + 137)
 
gp: K = bnfinit(x^16 - 2*x^15 - 2*x^14 + 24*x^13 - 50*x^12 - 38*x^11 + 250*x^10 - 308*x^9 - 110*x^8 + 1014*x^7 - 1178*x^6 - 188*x^5 + 1484*x^4 - 1626*x^3 + 862*x^2 - 220*x + 137, 1)
 

Normalized defining polynomial

\( x^{16} - 2 x^{15} - 2 x^{14} + 24 x^{13} - 50 x^{12} - 38 x^{11} + 250 x^{10} - 308 x^{9} - 110 x^{8} + 1014 x^{7} - 1178 x^{6} - 188 x^{5} + 1484 x^{4} - 1626 x^{3} + 862 x^{2} - 220 x + 137 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(2324101713520230400000000=2^{28}\cdot 5^{8}\cdot 53^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $33.33$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 53$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{145} a^{13} + \frac{54}{145} a^{12} + \frac{5}{29} a^{11} + \frac{24}{145} a^{10} - \frac{69}{145} a^{9} - \frac{7}{29} a^{8} - \frac{11}{29} a^{7} - \frac{9}{29} a^{6} + \frac{7}{29} a^{5} - \frac{26}{145} a^{4} + \frac{46}{145} a^{3} + \frac{8}{29} a^{2} - \frac{41}{145} a - \frac{34}{145}$, $\frac{1}{145} a^{14} + \frac{9}{145} a^{12} - \frac{21}{145} a^{11} - \frac{12}{29} a^{10} + \frac{66}{145} a^{9} - \frac{10}{29} a^{8} + \frac{5}{29} a^{7} - \frac{31}{145} a^{5} + \frac{21}{145} a^{3} - \frac{26}{145} a^{2} + \frac{1}{29} a - \frac{49}{145}$, $\frac{1}{895391967285925} a^{15} + \frac{339758935434}{179078393457185} a^{14} - \frac{585674700862}{895391967285925} a^{13} + \frac{70042278373307}{179078393457185} a^{12} - \frac{48218824321536}{179078393457185} a^{11} + \frac{108652141252477}{895391967285925} a^{10} + \frac{285007436524219}{895391967285925} a^{9} - \frac{32280222813118}{179078393457185} a^{8} + \frac{1293059271798}{6175117015765} a^{7} - \frac{7828314228154}{30875585078825} a^{6} + \frac{49053104134594}{179078393457185} a^{5} - \frac{117897182009248}{895391967285925} a^{4} - \frac{218924829520472}{895391967285925} a^{3} + \frac{88282190465958}{179078393457185} a^{2} - \frac{296354753467283}{895391967285925} a - \frac{245813364681346}{895391967285925}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{4}$, which has order $4$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{404003535}{14006913841} a^{15} + \frac{319275493}{14006913841} a^{14} + \frac{1125714908}{14006913841} a^{13} - \frac{8251706477}{14006913841} a^{12} + \frac{10421999247}{14006913841} a^{11} + \frac{26497476498}{14006913841} a^{10} - \frac{66888376270}{14006913841} a^{9} + \frac{48205910545}{14006913841} a^{8} + \frac{89176021773}{14006913841} a^{7} - \frac{294140394787}{14006913841} a^{6} + \frac{140293561628}{14006913841} a^{5} + \frac{189306259903}{14006913841} a^{4} - \frac{342555240417}{14006913841} a^{3} + \frac{296174656622}{14006913841} a^{2} - \frac{65930399304}{14006913841} a + \frac{51675917960}{14006913841} \) (order $4$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 639020.132944 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$Q_8:C_2^2.D_6$ (as 16T754):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 384
The 23 conjugacy class representatives for $Q_8:C_2^2.D_6$
Character table for $Q_8:C_2^2.D_6$ is not computed

Intermediate fields

\(\Q(\sqrt{-1}) \), 4.4.21200.1, 8.0.7191040000.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ R ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$5$$\Q_{5}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{5}$$x + 2$$1$$1$$0$Trivial$[\ ]$
5.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
5.3.2.1$x^{3} - 5$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
5.3.2.1$x^{3} - 5$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
5.6.4.1$x^{6} + 25 x^{3} + 200$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$
53Data not computed