Normalized defining polynomial
\( x^{16} - x^{15} + 6 x^{14} - 6 x^{13} + 10 x^{12} - 15 x^{11} - 2 x^{10} - 23 x^{9} - 18 x^{8} - 9 x^{7} + 4 x^{6} + 45 x^{5} + 63 x^{4} + 49 x^{3} + 26 x^{2} + 8 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(231549328645449984=2^{8}\cdot 3^{8}\cdot 13^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $12.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{7} a^{14} - \frac{2}{7} a^{13} - \frac{3}{7} a^{12} - \frac{2}{7} a^{11} + \frac{3}{7} a^{10} - \frac{3}{7} a^{9} + \frac{3}{7} a^{8} - \frac{2}{7} a^{6} - \frac{2}{7} a^{4} - \frac{2}{7} a^{3} + \frac{3}{7} a^{2} - \frac{2}{7} a + \frac{2}{7}$, $\frac{1}{888881} a^{15} - \frac{12315}{888881} a^{14} - \frac{224752}{888881} a^{13} + \frac{255603}{888881} a^{12} - \frac{348660}{888881} a^{11} - \frac{149971}{888881} a^{10} + \frac{29123}{888881} a^{9} + \frac{15190}{126983} a^{8} + \frac{355024}{888881} a^{7} - \frac{35541}{126983} a^{6} + \frac{225230}{888881} a^{5} - \frac{173455}{888881} a^{4} - \frac{310076}{888881} a^{3} + \frac{278052}{888881} a^{2} + \frac{418259}{888881} a + \frac{52873}{126983}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1946981}{126983} a^{15} + \frac{2680615}{126983} a^{14} - \frac{12686993}{126983} a^{13} + \frac{16446210}{126983} a^{12} - \frac{25611350}{126983} a^{11} + \frac{38738965}{126983} a^{10} - \frac{10494296}{126983} a^{9} + \frac{48434404}{126983} a^{8} + \frac{17136596}{126983} a^{7} + \frac{10718037}{126983} a^{6} - \frac{11565271}{126983} a^{5} - \frac{83412670}{126983} a^{4} - \frac{91195563}{126983} a^{3} - \frac{60987323}{126983} a^{2} - \frac{27775407}{126983} a - \frac{5099267}{126983} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 223.591496429 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$OD_{16}:C_2^2$ (as 16T106):
| A solvable group of order 64 |
| The 22 conjugacy class representatives for $OD_{16}:C_2^2$ |
| Character table for $OD_{16}:C_2^2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-39}) \), 4.2.507.1 x2, 4.0.117.1 x2, \(\Q(\sqrt{-3}, \sqrt{13})\), 8.0.2313441.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.4 | $x^{8} + 2 x^{7} + 2 x^{6} + 8 x^{3} + 48$ | $2$ | $4$ | $8$ | $C_8$ | $[2]^{4}$ |
| 2.8.0.1 | $x^{8} + x^{4} + x^{3} + x + 1$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $13$ | 13.8.6.2 | $x^{8} + 39 x^{4} + 676$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |