Normalized defining polynomial
\( x^{16} - 2 x^{15} - 4 x^{14} + 20 x^{13} - 49 x^{12} + 38 x^{11} + 225 x^{10} - 426 x^{9} + 1078 x^{8} - 624 x^{7} + 555 x^{6} - 130 x^{5} - 160 x^{4} - 616 x^{3} - 550 x^{2} + 484 x + 484 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(231260683111582301945856=2^{24}\cdot 3^{12}\cdot 11^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.86$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{18} a^{12} + \frac{1}{9} a^{11} + \frac{1}{18} a^{10} - \frac{1}{9} a^{9} - \frac{4}{9} a^{8} - \frac{2}{9} a^{7} + \frac{5}{18} a^{6} - \frac{2}{9} a^{5} - \frac{5}{18} a^{4} - \frac{1}{9} a^{3} + \frac{2}{9} a^{2} + \frac{1}{9} a - \frac{4}{9}$, $\frac{1}{54} a^{13} + \frac{1}{54} a^{12} - \frac{1}{54} a^{11} - \frac{1}{18} a^{10} - \frac{1}{9} a^{9} + \frac{11}{27} a^{8} - \frac{1}{6} a^{7} + \frac{1}{6} a^{6} - \frac{19}{54} a^{5} + \frac{7}{18} a^{4} - \frac{2}{9} a^{3} - \frac{10}{27} a^{2} + \frac{13}{27} a - \frac{5}{27}$, $\frac{1}{594} a^{14} - \frac{1}{297} a^{13} - \frac{2}{297} a^{12} - \frac{5}{33} a^{11} + \frac{13}{198} a^{10} + \frac{74}{297} a^{9} - \frac{79}{198} a^{8} + \frac{13}{33} a^{7} + \frac{11}{27} a^{6} - \frac{38}{99} a^{5} - \frac{13}{198} a^{4} + \frac{89}{297} a^{3} - \frac{146}{297} a^{2} + \frac{5}{27} a + \frac{4}{9}$, $\frac{1}{6711108307097753394} a^{15} + \frac{4796168388575645}{6711108307097753394} a^{14} - \frac{7843304352852677}{6711108307097753394} a^{13} + \frac{22171568706356666}{1118518051182958899} a^{12} - \frac{424894700739561407}{3355554153548876697} a^{11} - \frac{191808569779666601}{6711108307097753394} a^{10} + \frac{1067472512255542219}{6711108307097753394} a^{9} - \frac{277297509075612061}{610100755190704854} a^{8} - \frac{2705564369917840897}{6711108307097753394} a^{7} + \frac{388860295244623462}{3355554153548876697} a^{6} - \frac{1243357534603545146}{3355554153548876697} a^{5} - \frac{641439376855245695}{6711108307097753394} a^{4} - \frac{15648340366369072}{1118518051182958899} a^{3} - \frac{838558197126779048}{3355554153548876697} a^{2} - \frac{120571552788722939}{305050377595352427} a + \frac{66924086035017326}{305050377595352427}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 530457.830501 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3$ (as 16T329):
| A solvable group of order 128 |
| The 29 conjugacy class representatives for $C_2^4.C_2^3$ |
| Character table for $C_2^4.C_2^3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{11}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{33}) \), 4.0.13068.1 x2, \(\Q(\sqrt{3}, \sqrt{11})\), 4.0.4752.1 x2, 8.0.2732361984.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.4.8.4 | $x^{4} + 6 x^{2} + 4 x + 6$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.8.3 | $x^{4} + 6 x^{2} + 4 x + 14$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| $3$ | 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ |
| 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
| $11$ | 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.4.3.2 | $x^{4} - 11$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.3.2 | $x^{4} - 11$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |