Normalized defining polynomial
\( x^{16} - x^{15} + 307 x^{14} - 307 x^{13} + 38863 x^{12} - 38863 x^{11} + 2616607 x^{10} - 2616607 x^{9} + 100769167 x^{8} - 100769167 x^{7} + 2220864463 x^{6} - 2220864463 x^{5} + 26505592399 x^{4} - 26505592399 x^{3} + 151398478927 x^{2} - 151398478927 x + 338737808719 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2308429957160341796132964777021233=17^{15}\cdot 73^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $121.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1241=17\cdot 73\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1241}(512,·)$, $\chi_{1241}(1,·)$, $\chi_{1241}(1094,·)$, $\chi_{1241}(583,·)$, $\chi_{1241}(1096,·)$, $\chi_{1241}(1167,·)$, $\chi_{1241}(656,·)$, $\chi_{1241}(1169,·)$, $\chi_{1241}(218,·)$, $\chi_{1241}(220,·)$, $\chi_{1241}(802,·)$, $\chi_{1241}(293,·)$, $\chi_{1241}(364,·)$, $\chi_{1241}(366,·)$, $\chi_{1241}(437,·)$, $\chi_{1241}(950,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{41129090011} a^{9} - \frac{8474963750}{41129090011} a^{8} + \frac{162}{41129090011} a^{7} + \frac{13477920330}{41129090011} a^{6} + \frac{8748}{41129090011} a^{5} - \frac{10429935315}{41129090011} a^{4} + \frac{174960}{41129090011} a^{3} + \frac{14325291508}{41129090011} a^{2} + \frac{944784}{41129090011} a - \frac{8897184118}{41129090011}$, $\frac{1}{41129090011} a^{10} + \frac{180}{41129090011} a^{8} - \frac{11967012544}{41129090011} a^{7} + \frac{11340}{41129090011} a^{6} + \frac{13932749863}{41129090011} a^{5} + \frac{291600}{41129090011} a^{4} + \frac{8029914936}{41129090011} a^{3} + \frac{2624400}{41129090011} a^{2} - \frac{9988945598}{41129090011} a + \frac{3779136}{41129090011}$, $\frac{1}{41129090011} a^{11} - \frac{8249867951}{41129090011} a^{8} - \frac{17820}{41129090011} a^{7} + \frac{14523401112}{41129090011} a^{6} - \frac{1283040}{41129090011} a^{5} - \frac{6519868870}{41129090011} a^{4} - \frac{28868400}{41129090011} a^{3} + \frac{2591253655}{41129090011} a^{2} - \frac{166281984}{41129090011} a - \frac{2541369189}{41129090011}$, $\frac{1}{41129090011} a^{12} - \frac{21384}{41129090011} a^{8} - \frac{6257961189}{41129090011} a^{7} - \frac{1796256}{41129090011} a^{6} - \frac{18228002827}{41129090011} a^{5} - \frac{51963120}{41129090011} a^{4} + \frac{15203114581}{41129090011} a^{3} - \frac{498845952}{41129090011} a^{2} + \frac{7981953796}{41129090011} a - \frac{748268928}{41129090011}$, $\frac{1}{41129090011} a^{13} - \frac{20112202723}{41129090011} a^{8} + \frac{1667952}{41129090011} a^{7} + \frac{2086626816}{41129090011} a^{6} + \frac{135104112}{41129090011} a^{5} - \frac{16607621737}{41129090011} a^{4} + \frac{3242498688}{41129090011} a^{3} + \frac{10553158940}{41129090011} a^{2} + \frac{19454992128}{41129090011} a + \frac{5785211574}{41129090011}$, $\frac{1}{41129090011} a^{14} + \frac{2122848}{41129090011} a^{8} + \frac{11065357073}{41129090011} a^{7} + \frac{200609136}{41129090011} a^{6} + \frac{15823822020}{41129090011} a^{5} + \frac{6190224768}{41129090011} a^{4} + \frac{1116593904}{41129090011} a^{3} - \frac{20355932342}{41129090011} a^{2} + \frac{12408486395}{41129090011} a + \frac{13248144970}{41129090011}$, $\frac{1}{41129090011} a^{15} + \frac{14197695354}{41129090011} a^{8} - \frac{143292240}{41129090011} a^{7} + \frac{14460544363}{41129090011} a^{6} - \frac{12380449536}{41129090011} a^{5} - \frac{19101810650}{41129090011} a^{4} + \frac{19521481688}{41129090011} a^{3} - \frac{7284545110}{41129090011} a^{2} - \frac{18188359334}{41129090011} a - \frac{13462503378}{41129090011}$
Class group and class number
$C_{1356226}$, which has order $1356226$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3640.01221338 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 16 |
| The 16 conjugacy class representatives for $C_{16}$ |
| Character table for $C_{16}$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| 73 | Data not computed | ||||||