Normalized defining polynomial
\( x^{16} - 6 x^{15} + 12 x^{14} + 18 x^{13} - 145 x^{12} + 156 x^{11} + 1152 x^{10} - 6153 x^{9} + 15545 x^{8} - 22656 x^{7} + 12273 x^{6} + 27438 x^{5} - 72479 x^{4} + 59010 x^{3} + 17064 x^{2} - 61830 x + 34425 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(23062278680241626549323607533=37^{7}\cdot 149^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $59.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 149$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{9} a^{12} + \frac{1}{9} a^{10} + \frac{1}{3} a^{8} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{4}{9} a^{4} + \frac{1}{3} a^{3} - \frac{4}{9} a^{2}$, $\frac{1}{9} a^{13} + \frac{1}{9} a^{11} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{4}{9} a^{5} + \frac{1}{3} a^{4} - \frac{4}{9} a^{3} + \frac{1}{3} a$, $\frac{1}{5535} a^{14} - \frac{59}{1107} a^{13} - \frac{68}{5535} a^{12} + \frac{127}{1107} a^{11} - \frac{50}{369} a^{10} - \frac{88}{1845} a^{9} + \frac{1}{1845} a^{8} + \frac{10}{41} a^{7} + \frac{76}{1107} a^{6} - \frac{86}{5535} a^{5} + \frac{2492}{5535} a^{4} - \frac{49}{1107} a^{3} + \frac{632}{1845} a^{2} - \frac{121}{615} a - \frac{14}{41}$, $\frac{1}{398121588664591434213555} a^{15} - \frac{1163779014322230214}{398121588664591434213555} a^{14} + \frac{4229119325208633155302}{398121588664591434213555} a^{13} + \frac{19476224555810545268822}{398121588664591434213555} a^{12} - \frac{650341054675402247234}{26541439244306095614237} a^{11} - \frac{6763904194502016703721}{44235732073843492690395} a^{10} + \frac{648127725996011323168}{132707196221530478071185} a^{9} - \frac{17999062307022312362503}{44235732073843492690395} a^{8} - \frac{21960924943789479735401}{79624317732918286842711} a^{7} + \frac{143642398564068659033644}{398121588664591434213555} a^{6} - \frac{27143757455992034446729}{398121588664591434213555} a^{5} - \frac{114639818824613080845278}{398121588664591434213555} a^{4} + \frac{22047535331019650116367}{132707196221530478071185} a^{3} + \frac{59145731666348338867604}{132707196221530478071185} a^{2} - \frac{4152049776014697375182}{14745244024614497563465} a - \frac{584937842256333098068}{2949048804922899512693}$
Class group and class number
$C_{47}$, which has order $47$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2748487.80142 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $D_{16}$ |
| Character table for $D_{16}$ |
Intermediate fields
| \(\Q(\sqrt{149}) \), 4.4.821437.1, 8.8.24966073563853.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $16$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | $16$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $16$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | $16$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $37$ | 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 37.2.1.2 | $x^{2} + 74$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $149$ | 149.2.1.1 | $x^{2} - 149$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 149.2.1.1 | $x^{2} - 149$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 149.2.1.1 | $x^{2} - 149$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 149.2.1.1 | $x^{2} - 149$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 149.2.1.1 | $x^{2} - 149$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 149.2.1.1 | $x^{2} - 149$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 149.2.1.1 | $x^{2} - 149$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 149.2.1.1 | $x^{2} - 149$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |