Normalized defining polynomial
\( x^{16} - 2 x^{15} + 195 x^{14} - 338 x^{13} + 17357 x^{12} - 25718 x^{11} + 917938 x^{10} - 1136632 x^{9} + 31478439 x^{8} - 31424078 x^{7} + 715763506 x^{6} - 542563352 x^{5} + 10530368990 x^{4} - 5412835164 x^{3} + 91622805660 x^{2} - 24069872832 x + 361048092497 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2304366822037031859005514783391744=2^{24}\cdot 13^{8}\cdot 17^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $121.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1768=2^{3}\cdot 13\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1768}(1,·)$, $\chi_{1768}(259,·)$, $\chi_{1768}(1665,·)$, $\chi_{1768}(1611,·)$, $\chi_{1768}(1041,·)$, $\chi_{1768}(467,·)$, $\chi_{1768}(729,·)$, $\chi_{1768}(987,·)$, $\chi_{1768}(417,·)$, $\chi_{1768}(155,·)$, $\chi_{1768}(937,·)$, $\chi_{1768}(625,·)$, $\chi_{1768}(883,·)$, $\chi_{1768}(1715,·)$, $\chi_{1768}(1249,·)$, $\chi_{1768}(1403,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{901530475602006767981577568356438702128606021417142043073} a^{15} - \frac{387871368256704415224329752793505411063592042848763485969}{901530475602006767981577568356438702128606021417142043073} a^{14} - \frac{448055741588232678194320089428774802796152699126809072451}{901530475602006767981577568356438702128606021417142043073} a^{13} + \frac{199138303632906226589393735326419698290701957104248767193}{901530475602006767981577568356438702128606021417142043073} a^{12} + \frac{442745031911451319906326730935479178147593578440826091721}{901530475602006767981577568356438702128606021417142043073} a^{11} + \frac{115199877919779059044015386690281926658285867771117419083}{901530475602006767981577568356438702128606021417142043073} a^{10} + \frac{47850390634860997189178734644459641166361439401751868764}{901530475602006767981577568356438702128606021417142043073} a^{9} + \frac{93673830313185343854790968939479429397048776865726520487}{901530475602006767981577568356438702128606021417142043073} a^{8} - \frac{256836042743004354850558436701224239716431339782687603530}{901530475602006767981577568356438702128606021417142043073} a^{7} - \frac{385557118738587688868288029070337916334755219140076345731}{901530475602006767981577568356438702128606021417142043073} a^{6} - \frac{255776999583558471303445220351797311092890354220739920614}{901530475602006767981577568356438702128606021417142043073} a^{5} + \frac{116021084303024126300866136434553495103035983745583971428}{901530475602006767981577568356438702128606021417142043073} a^{4} + \frac{374883478174531301935466096505151989243770333384380743009}{901530475602006767981577568356438702128606021417142043073} a^{3} - \frac{19217129302496381497660728882629224625392578705467875254}{901530475602006767981577568356438702128606021417142043073} a^{2} - \frac{358795519873290957914362769697606679408347629880762054291}{901530475602006767981577568356438702128606021417142043073} a + \frac{307864143123720428582942173939851605089623452334240482685}{901530475602006767981577568356438702128606021417142043073}$
Class group and class number
$C_{4}\times C_{4}\times C_{20}\times C_{40}\times C_{120}$, which has order $1536000$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3640.012213375973 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-442}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-26}) \), \(\Q(\sqrt{17}, \sqrt{-26})\), 4.4.4913.1, 4.0.53139008.6, 8.0.2823754171224064.89, 8.0.48003820910809088.30, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | R | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.2 | $x^{8} + 2 x^{6} + 8 x^{4} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ |
| 2.8.12.2 | $x^{8} + 2 x^{6} + 8 x^{4} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| $13$ | 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $17$ | 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |