Properties

Label 16.0.23043642001...0976.4
Degree $16$
Signature $[0, 8]$
Discriminant $2^{72}\cdot 47^{4}$
Root discriminant $59.25$
Ramified primes $2, 47$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_2^4.C_2^3.C_2$ (as 16T565)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![259522, -266560, -81584, 197696, -33024, -46560, 9616, 9728, -788, -2544, 496, 96, 80, -48, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 48*x^13 + 80*x^12 + 96*x^11 + 496*x^10 - 2544*x^9 - 788*x^8 + 9728*x^7 + 9616*x^6 - 46560*x^5 - 33024*x^4 + 197696*x^3 - 81584*x^2 - 266560*x + 259522)
 
gp: K = bnfinit(x^16 - 48*x^13 + 80*x^12 + 96*x^11 + 496*x^10 - 2544*x^9 - 788*x^8 + 9728*x^7 + 9616*x^6 - 46560*x^5 - 33024*x^4 + 197696*x^3 - 81584*x^2 - 266560*x + 259522, 1)
 

Normalized defining polynomial

\( x^{16} - 48 x^{13} + 80 x^{12} + 96 x^{11} + 496 x^{10} - 2544 x^{9} - 788 x^{8} + 9728 x^{7} + 9616 x^{6} - 46560 x^{5} - 33024 x^{4} + 197696 x^{3} - 81584 x^{2} - 266560 x + 259522 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(23043642001495833226013310976=2^{72}\cdot 47^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $59.25$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 47$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{17} a^{14} + \frac{3}{17} a^{13} - \frac{8}{17} a^{12} - \frac{4}{17} a^{11} - \frac{6}{17} a^{9} + \frac{2}{17} a^{8} - \frac{5}{17} a^{7} - \frac{4}{17} a^{6} - \frac{8}{17} a^{5} + \frac{4}{17} a^{4} - \frac{2}{17} a^{3} + \frac{1}{17} a^{2} + \frac{6}{17} a$, $\frac{1}{9930395088926826399919375242167551} a^{15} - \frac{6972680818363042670339307268707}{9930395088926826399919375242167551} a^{14} + \frac{1479622476600108311174052790263341}{9930395088926826399919375242167551} a^{13} - \frac{1637579887657764109828967069398472}{9930395088926826399919375242167551} a^{12} - \frac{884588419203502395794841056872773}{9930395088926826399919375242167551} a^{11} - \frac{3608391134617882714819821666638748}{9930395088926826399919375242167551} a^{10} - \frac{764323219762429033135944106923164}{9930395088926826399919375242167551} a^{9} + \frac{28416693363251912853838815988538}{211285001892060136168497345578033} a^{8} - \frac{3243506663268232653609632222690615}{9930395088926826399919375242167551} a^{7} + \frac{2580715762353489245566678384024047}{9930395088926826399919375242167551} a^{6} + \frac{854807092318899319929123820901443}{9930395088926826399919375242167551} a^{5} - \frac{2183424140333909631557605760552493}{9930395088926826399919375242167551} a^{4} + \frac{3061207686101037780003838239206576}{9930395088926826399919375242167551} a^{3} - \frac{3039251021601970929164319723162284}{9930395088926826399919375242167551} a^{2} + \frac{4103323505444550989128588852517957}{9930395088926826399919375242167551} a + \frac{69927582031411271289975042415284}{584140887583930964701139720127503}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 40608494.2092 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^4.C_2^3.C_2$ (as 16T565):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 256
The 28 conjugacy class representatives for $C_2^4.C_2^3.C_2$
Character table for $C_2^4.C_2^3.C_2$ is not computed

Intermediate fields

\(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 8.0.2147483648.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
47Data not computed