Normalized defining polynomial
\( x^{16} - 48 x^{13} + 8 x^{12} - 96 x^{11} + 640 x^{10} - 736 x^{9} + 2860 x^{8} + 2240 x^{7} + 35808 x^{6} + 63200 x^{5} + 203552 x^{4} + 347264 x^{3} + 610432 x^{2} + 596864 x + 314044 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(23043642001495833226013310976=2^{72}\cdot 47^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $59.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{4} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{12} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{13} - \frac{1}{2} a^{5}$, $\frac{1}{68} a^{14} + \frac{3}{68} a^{13} + \frac{1}{68} a^{12} - \frac{1}{68} a^{11} - \frac{3}{68} a^{10} + \frac{5}{68} a^{9} + \frac{4}{17} a^{8} + \frac{5}{17} a^{7} + \frac{1}{17} a^{6} - \frac{4}{17} a^{5} - \frac{3}{34} a^{4} + \frac{1}{34} a^{3} + \frac{7}{34} a^{2} + \frac{7}{34} a + \frac{7}{17}$, $\frac{1}{1121241444000832597319845895217988} a^{15} + \frac{4226640409055386679657754462403}{1121241444000832597319845895217988} a^{14} + \frac{67044415738198130482890833818223}{560620722000416298659922947608994} a^{13} + \frac{27652033839188615777165827810803}{560620722000416298659922947608994} a^{12} - \frac{9077782244964806588779102380353}{1121241444000832597319845895217988} a^{11} - \frac{12614557193630522532485714219300}{280310361000208149329961473804497} a^{10} + \frac{506213287588830262377284148735}{16488844764718126431174204341441} a^{9} + \frac{63403420942223845460566614138027}{560620722000416298659922947608994} a^{8} - \frac{60842895234430227927714176380739}{280310361000208149329961473804497} a^{7} - \frac{232892762154988691553114681682357}{560620722000416298659922947608994} a^{6} - \frac{15637058560463393148225065225766}{280310361000208149329961473804497} a^{5} - \frac{95786710198904730119966571842742}{280310361000208149329961473804497} a^{4} - \frac{193690395334927125652624350345779}{560620722000416298659922947608994} a^{3} + \frac{46659130643695276535677649076311}{280310361000208149329961473804497} a^{2} - \frac{302382745986089982624711870602}{763788449591847818337769683391} a - \frac{6425376263132969020701607528986}{280310361000208149329961473804497}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 43800097.3343 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3.C_2$ (as 16T565):
| A solvable group of order 256 |
| The 28 conjugacy class representatives for $C_2^4.C_2^3.C_2$ |
| Character table for $C_2^4.C_2^3.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 8.0.2147483648.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 47 | Data not computed | ||||||