Normalized defining polynomial
\( x^{16} + 16 x^{14} - 32 x^{13} + 120 x^{12} - 672 x^{11} + 1136 x^{10} - 4720 x^{9} + 12692 x^{8} - 24064 x^{7} + 60832 x^{6} - 102272 x^{5} + 159520 x^{4} - 227392 x^{3} + 238672 x^{2} - 225632 x + 132098 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(23043642001495833226013310976=2^{72}\cdot 47^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $59.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{7} a^{14} - \frac{1}{7} a^{13} - \frac{1}{7} a^{12} + \frac{1}{7} a^{11} - \frac{3}{7} a^{10} - \frac{1}{7} a^{9} + \frac{1}{7} a^{8} + \frac{1}{7} a^{7} + \frac{3}{7} a^{6} + \frac{2}{7} a^{5} + \frac{2}{7} a^{4} + \frac{2}{7} a^{3} + \frac{1}{7} a^{2} + \frac{1}{7} a + \frac{2}{7}$, $\frac{1}{70971636111254061729556865401485239} a^{15} - \frac{171395258235242766559526951441990}{10138805158750580247079552200212177} a^{14} - \frac{12306048684826066845018230911820679}{70971636111254061729556865401485239} a^{13} - \frac{2508333456346699258289500416641275}{10138805158750580247079552200212177} a^{12} - \frac{22288964567990583487055586486771135}{70971636111254061729556865401485239} a^{11} + \frac{28239530205593968942021657878550243}{70971636111254061729556865401485239} a^{10} - \frac{3038817429090074122042104081708086}{10138805158750580247079552200212177} a^{9} + \frac{5729904208310920569849580298551575}{70971636111254061729556865401485239} a^{8} + \frac{27196848985922336648758874548655476}{70971636111254061729556865401485239} a^{7} + \frac{1991278950144594006934258248216032}{4174802124191415395856286200087367} a^{6} + \frac{11288893129655370382520534465910679}{70971636111254061729556865401485239} a^{5} - \frac{12685047220866190250208211082118661}{70971636111254061729556865401485239} a^{4} + \frac{30666518844409423346687216764700728}{70971636111254061729556865401485239} a^{3} + \frac{22305675068143675973155368228711805}{70971636111254061729556865401485239} a^{2} + \frac{31457879732298138351769025758226562}{70971636111254061729556865401485239} a - \frac{11819572832489242222014735374020039}{70971636111254061729556865401485239}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 40150114.3022 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3.C_2$ (as 16T565):
| A solvable group of order 256 |
| The 28 conjugacy class representatives for $C_2^4.C_2^3.C_2$ |
| Character table for $C_2^4.C_2^3.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 8.0.2147483648.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 47 | Data not computed | ||||||