Normalized defining polynomial
\( x^{16} - 26 x^{14} + 317 x^{12} - 2378 x^{10} + 11860 x^{8} - 39487 x^{6} + 84497 x^{4} - 104554 x^{2} + 58081 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2294177990240478515625=3^{12}\cdot 5^{14}\cdot 29^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.63$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{534363166262} a^{14} - \frac{32523013716}{267181583131} a^{12} + \frac{25719704343}{267181583131} a^{10} - \frac{23585277013}{267181583131} a^{8} + \frac{68253229688}{267181583131} a^{6} - \frac{1}{2} a^{5} + \frac{54180770231}{534363166262} a^{4} - \frac{1}{2} a^{3} - \frac{237696486309}{534363166262} a^{2} - \frac{1}{2} a + \frac{79104267842}{267181583131}$, $\frac{1}{128781523069142} a^{15} - \frac{7780788924515}{64390761534571} a^{13} - \frac{10903005499685}{128781523069142} a^{11} + \frac{3984138469952}{64390761534571} a^{9} - \frac{7611759451423}{128781523069142} a^{7} + \frac{19664936745244}{64390761534571} a^{5} - \frac{30162033796981}{128781523069142} a^{3} - \frac{1}{2} a^{2} + \frac{55999159410063}{128781523069142} a$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{12213679605}{128781523069142} a^{15} - \frac{254672493}{534363166262} a^{14} + \frac{303936587897}{128781523069142} a^{13} + \frac{3125063889}{267181583131} a^{12} - \frac{1779447337177}{64390761534571} a^{11} - \frac{69942013325}{534363166262} a^{10} + \frac{25409244577345}{128781523069142} a^{9} + \frac{470095686159}{534363166262} a^{8} - \frac{118703606104403}{128781523069142} a^{7} - \frac{2025347410099}{534363166262} a^{6} + \frac{355181804672125}{128781523069142} a^{5} + \frac{5379255217575}{534363166262} a^{4} - \frac{309172052929041}{64390761534571} a^{3} - \frac{3926099725406}{267181583131} a^{2} + \frac{470812933295179}{128781523069142} a + \frac{4479566019035}{534363166262} \) (order $30$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 28843.8333662 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_2^3.C_4$ (as 16T99):
| A solvable group of order 64 |
| The 22 conjugacy class representatives for $C_2\times C_2^3.C_4$ |
| Character table for $C_2\times C_2^3.C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-3}) \), \(\Q(\zeta_{15})^+\), \(\Q(\zeta_{5})\), \(\Q(\sqrt{-3}, \sqrt{5})\), 8.0.47897578125.1, 8.8.47897578125.1, \(\Q(\zeta_{15})\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | R | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |