Normalized defining polynomial
\( x^{16} - 7 x^{15} + 38 x^{14} - 192 x^{13} + 1030 x^{12} - 4346 x^{11} + 14527 x^{10} - 42823 x^{9} + 138300 x^{8} - 431096 x^{7} + 1016744 x^{6} - 1671056 x^{5} + 1216768 x^{4} + 804608 x^{3} - 1660032 x^{2} + 678400 x + 1859584 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(228732005557745506375281661426849=37^{4}\cdot 73^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $105.31$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} + \frac{1}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{16} a^{10} - \frac{1}{8} a^{8} - \frac{1}{8} a^{7} - \frac{1}{8} a^{5} + \frac{1}{16} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{32} a^{11} - \frac{1}{32} a^{10} - \frac{1}{16} a^{9} - \frac{1}{8} a^{8} - \frac{3}{16} a^{7} + \frac{3}{16} a^{6} + \frac{3}{32} a^{5} - \frac{1}{32} a^{4} + \frac{1}{8} a^{3} + \frac{1}{4} a^{2} - \frac{1}{4} a$, $\frac{1}{384} a^{12} + \frac{1}{384} a^{11} - \frac{5}{192} a^{10} - \frac{1}{16} a^{9} + \frac{19}{192} a^{8} - \frac{29}{192} a^{7} - \frac{11}{128} a^{6} + \frac{11}{128} a^{5} - \frac{17}{96} a^{4} + \frac{1}{3} a^{3} - \frac{13}{48} a^{2} - \frac{1}{4} a + \frac{1}{3}$, $\frac{1}{12288} a^{13} + \frac{1}{4096} a^{12} + \frac{23}{1536} a^{11} - \frac{95}{3072} a^{10} - \frac{293}{6144} a^{9} + \frac{179}{2048} a^{8} - \frac{2549}{12288} a^{7} + \frac{53}{4096} a^{6} - \frac{1105}{6144} a^{5} - \frac{331}{1536} a^{4} + \frac{259}{1536} a^{3} + \frac{209}{768} a^{2} - \frac{19}{192} a - \frac{5}{12}$, $\frac{1}{196608} a^{14} + \frac{5}{196608} a^{13} + \frac{31}{98304} a^{12} - \frac{419}{49152} a^{11} + \frac{885}{32768} a^{10} - \frac{1585}{98304} a^{9} - \frac{3291}{65536} a^{8} + \frac{22453}{196608} a^{7} - \frac{10937}{49152} a^{6} - \frac{1453}{16384} a^{5} + \frac{5197}{24576} a^{4} - \frac{379}{3072} a^{3} - \frac{2485}{6144} a^{2} - \frac{107}{1536} a + \frac{11}{96}$, $\frac{1}{39183685973993340989789442146304} a^{15} + \frac{81733096198030293475275311}{39183685973993340989789442146304} a^{14} + \frac{2039717749820886043685035}{816326791124861270620613378048} a^{13} + \frac{922069369277579640149915765}{1224490186687291905930920067072} a^{12} - \frac{223772170318698701367190953757}{19591842986996670494894721073152} a^{11} - \frac{562357558583716791277771614875}{19591842986996670494894721073152} a^{10} - \frac{302122303677842567371848647845}{39183685973993340989789442146304} a^{9} - \frac{1126069345648793301373458043925}{39183685973993340989789442146304} a^{8} + \frac{488568141325531810284676609255}{19591842986996670494894721073152} a^{7} - \frac{55559415769051945437716047755}{3265307164499445082482453512192} a^{6} + \frac{132459793557985902169519288767}{816326791124861270620613378048} a^{5} + \frac{1786820128095364516126909215}{19910409539630762698063740928} a^{4} - \frac{42992165621153747178738604571}{408163395562430635310306689024} a^{3} + \frac{159336057784251479464736667025}{612245093343645952965460033536} a^{2} - \frac{4881289134568011777459020901}{51020424445303829413788336128} a + \frac{4136874593995521584606245159}{9566329583494468015085313024}$
Class group and class number
$C_{89}$, which has order $89$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 18076889725.9 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3.C_2$ (as 16T565):
| A solvable group of order 256 |
| The 28 conjugacy class representatives for $C_2^4.C_2^3.C_2$ |
| Character table for $C_2^4.C_2^3.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{73}) \), 4.4.389017.1, 8.0.11047398519097.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 37 | Data not computed | ||||||
| 73 | Data not computed | ||||||