Normalized defining polynomial
\( x^{16} - 4 x^{15} + 37 x^{14} - 331 x^{13} + 1532 x^{12} - 7501 x^{11} + 38313 x^{10} - 145668 x^{9} + 498951 x^{8} - 1545333 x^{7} + 3943200 x^{6} - 7439391 x^{5} + 10291030 x^{4} - 9803772 x^{3} + 6571656 x^{2} - 2368160 x + 430336 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(228732005557745506375281661426849=37^{4}\cdot 73^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $105.31$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{8} a^{3} - \frac{1}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{8} - \frac{1}{4} a^{6} + \frac{1}{8} a^{4} - \frac{1}{4} a^{3} + \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{8} - \frac{1}{4} a^{7} - \frac{1}{8} a^{5} + \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{96} a^{12} + \frac{1}{48} a^{11} - \frac{5}{96} a^{9} + \frac{1}{16} a^{8} - \frac{1}{24} a^{7} - \frac{17}{96} a^{6} - \frac{3}{16} a^{5} - \frac{5}{24} a^{4} + \frac{29}{96} a^{3} + \frac{17}{48} a^{2} - \frac{5}{12} a - \frac{1}{3}$, $\frac{1}{192} a^{13} + \frac{1}{24} a^{11} + \frac{7}{192} a^{10} - \frac{1}{24} a^{9} + \frac{1}{24} a^{8} + \frac{5}{64} a^{7} + \frac{5}{24} a^{6} + \frac{1}{48} a^{5} + \frac{11}{64} a^{4} + \frac{1}{8} a^{3} - \frac{3}{16} a^{2} + \frac{1}{3}$, $\frac{1}{113664} a^{14} + \frac{199}{113664} a^{13} - \frac{1}{296} a^{12} - \frac{3049}{113664} a^{11} + \frac{953}{113664} a^{10} + \frac{341}{14208} a^{9} + \frac{11519}{113664} a^{8} - \frac{7477}{37888} a^{7} - \frac{205}{9472} a^{6} + \frac{21541}{113664} a^{5} - \frac{14993}{113664} a^{4} - \frac{6085}{28416} a^{3} - \frac{13853}{28416} a^{2} - \frac{283}{2368} a - \frac{191}{888}$, $\frac{1}{1727840860462287931804904210109966336} a^{15} + \frac{2047735967017819183701176999317}{1727840860462287931804904210109966336} a^{14} + \frac{651437491480111593577212471730379}{287973476743714655300817368351661056} a^{13} - \frac{138919398773227635883666342782773}{46698401634115890048781194867836928} a^{12} + \frac{12771129717980990571698842470769641}{575946953487429310601634736703322112} a^{11} + \frac{28591010291802962598992730693130739}{863920430231143965902452105054983168} a^{10} + \frac{35940455987650543857106346254377583}{1727840860462287931804904210109966336} a^{9} + \frac{37821515482190554973392787170307505}{575946953487429310601634736703322112} a^{8} + \frac{199466865356827324477904905053782441}{863920430231143965902452105054983168} a^{7} - \frac{138526505802827067226926182534618081}{575946953487429310601634736703322112} a^{6} - \frac{134135340208241391533779692435089867}{1727840860462287931804904210109966336} a^{5} + \frac{151908024996884582252437931753033711}{863920430231143965902452105054983168} a^{4} - \frac{50267549551687346247140730238112755}{431960215115571982951226052527491584} a^{3} + \frac{89097107846981847902144067874096627}{215980107557785991475613026263745792} a^{2} + \frac{6910790355655488342552295484910159}{17998342296482165956301085521978816} a + \frac{23986101707358108226394968848847}{164618984419044200819827001725416}$
Class group and class number
$C_{89}$, which has order $89$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 20533345115.8 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3.C_2$ (as 16T565):
| A solvable group of order 256 |
| The 28 conjugacy class representatives for $C_2^4.C_2^3.C_2$ |
| Character table for $C_2^4.C_2^3.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{73}) \), 4.4.389017.1, 8.0.11047398519097.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 37 | Data not computed | ||||||
| 73 | Data not computed | ||||||