Normalized defining polynomial
\( x^{16} - 4 x^{15} + 117 x^{14} - 611 x^{13} + 3421 x^{12} - 18171 x^{11} + 47429 x^{10} - 478033 x^{9} + 48414 x^{8} + 5391363 x^{7} + 97125874 x^{6} - 14629984 x^{5} + 477553112 x^{4} - 3203742192 x^{3} + 3724493056 x^{2} - 15384971776 x + 28380726272 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(22858790439424412670626523398015008513=37^{6}\cdot 73^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $216.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{8} - \frac{1}{8} a^{6} + \frac{1}{8} a^{5} - \frac{1}{4} a^{4} + \frac{3}{8} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{7} - \frac{1}{8} a^{6} - \frac{1}{8} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{32} a^{10} - \frac{1}{32} a^{9} + \frac{1}{32} a^{8} - \frac{1}{16} a^{7} + \frac{3}{32} a^{6} - \frac{5}{32} a^{5} - \frac{5}{32} a^{4} - \frac{1}{2} a^{2} - \frac{1}{4} a$, $\frac{1}{32} a^{11} - \frac{1}{32} a^{8} + \frac{1}{32} a^{7} - \frac{1}{16} a^{6} + \frac{3}{16} a^{5} - \frac{5}{32} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4} a$, $\frac{1}{64} a^{12} - \frac{1}{64} a^{9} + \frac{1}{64} a^{8} - \frac{1}{32} a^{7} + \frac{3}{32} a^{6} + \frac{11}{64} a^{5} - \frac{1}{4} a^{4} - \frac{1}{8} a^{3} + \frac{1}{8} a^{2}$, $\frac{1}{256} a^{13} + \frac{1}{128} a^{11} - \frac{3}{256} a^{10} - \frac{13}{256} a^{9} + \frac{5}{128} a^{8} - \frac{5}{64} a^{7} - \frac{15}{256} a^{6} + \frac{11}{128} a^{5} + \frac{7}{32} a^{4} + \frac{5}{32} a^{3} - \frac{1}{16} a^{2} - \frac{1}{4} a$, $\frac{1}{35072} a^{14} - \frac{5}{35072} a^{13} - \frac{123}{17536} a^{12} + \frac{379}{35072} a^{11} + \frac{205}{17536} a^{10} + \frac{1963}{35072} a^{9} - \frac{647}{17536} a^{8} - \frac{99}{35072} a^{7} - \frac{279}{35072} a^{6} + \frac{1437}{17536} a^{5} - \frac{373}{2192} a^{4} + \frac{401}{4384} a^{3} + \frac{313}{2192} a^{2} + \frac{203}{548} a + \frac{63}{137}$, $\frac{1}{1847757715293505452662216396946986517667836618599113352050615808} a^{15} - \frac{14277602856300044213332838723325387029638024921443985288289}{1847757715293505452662216396946986517667836618599113352050615808} a^{14} + \frac{46509465515359456971195794580028530021013633659276395069319}{28871214301461022697847131202296664338559947165611146125790872} a^{13} + \frac{2160538967331675398110197757090722258557603106422263264795771}{1847757715293505452662216396946986517667836618599113352050615808} a^{12} - \frac{9101511271195064872141528251673548074637598421056365780143951}{923878857646752726331108198473493258833918309299556676025307904} a^{11} - \frac{19200830244071426750047006346832901695008158713324869048192499}{1847757715293505452662216396946986517667836618599113352050615808} a^{10} + \frac{15123069247274675313132244813385720661408609922723919576710667}{461939428823376363165554099236746629416959154649778338012653952} a^{9} + \frac{9126035628542267533860878259813515872063536805131459643042929}{1847757715293505452662216396946986517667836618599113352050615808} a^{8} + \frac{106051012087181478310393335803494595899282003726517233835603549}{1847757715293505452662216396946986517667836618599113352050615808} a^{7} + \frac{4350366336332378183576036856066019229908480832353913817094281}{115484857205844090791388524809186657354239788662444584503163488} a^{6} - \frac{105201808317529900850187226558022583961964429037115576732596987}{461939428823376363165554099236746629416959154649778338012653952} a^{5} + \frac{9423342933638102980405359100209113780318895217406302044408767}{230969714411688181582777049618373314708479577324889169006326976} a^{4} + \frac{255000613549553077770171188190028894162411906190992131899315}{28871214301461022697847131202296664338559947165611146125790872} a^{3} + \frac{14702430602074784315496552254336629414536296019991676250483383}{57742428602922045395694262404593328677119894331222292251581744} a^{2} + \frac{120850020154270600057993552666040804815907013783976841409363}{390151544614338144565501773004008977548107394129880353051228} a + \frac{17273780929978761652366820758876463894553993217659214494705}{97537886153584536141375443251002244387026848532470088262807}$
Class group and class number
$C_{2}\times C_{2}\times C_{178}$, which has order $712$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 793547094607 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 32 conjugacy class representatives for t16n841 |
| Character table for t16n841 is not computed |
Intermediate fields
| \(\Q(\sqrt{73}) \), 4.4.389017.1, 8.0.11047398519097.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | $16$ | $16$ | R | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | $16$ | $16$ | $16$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 37 | Data not computed | ||||||
| 73 | Data not computed | ||||||