Normalized defining polynomial
\( x^{16} - x^{15} + 171 x^{14} - 171 x^{13} + 12071 x^{12} - 12071 x^{11} + 454071 x^{10} - 454071 x^{9} + 9804071 x^{8} - 9804071 x^{7} + 122004071 x^{6} - 122004071 x^{5} + 836004071 x^{4} - 836004071 x^{3} + 2876004071 x^{2} - 2876004071 x + 4576004071 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(22856234040418247855901029307953=17^{15}\cdot 41^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $91.19$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(697=17\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{697}(1,·)$, $\chi_{697}(206,·)$, $\chi_{697}(83,·)$, $\chi_{697}(532,·)$, $\chi_{697}(286,·)$, $\chi_{697}(288,·)$, $\chi_{697}(163,·)$, $\chi_{697}(40,·)$, $\chi_{697}(42,·)$, $\chi_{697}(368,·)$, $\chi_{697}(616,·)$, $\chi_{697}(370,·)$, $\chi_{697}(245,·)$, $\chi_{697}(247,·)$, $\chi_{697}(122,·)$, $\chi_{697}(573,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{721445251} a^{9} + \frac{148964684}{721445251} a^{8} + \frac{90}{721445251} a^{7} - \frac{347394547}{721445251} a^{6} + \frac{2700}{721445251} a^{5} - \frac{27520663}{721445251} a^{4} + \frac{30000}{721445251} a^{3} - \frac{220165304}{721445251} a^{2} + \frac{90000}{721445251} a - \frac{275206630}{721445251}$, $\frac{1}{721445251} a^{10} + \frac{100}{721445251} a^{8} - \frac{46756338}{721445251} a^{7} + \frac{3500}{721445251} a^{6} + \frac{334282595}{721445251} a^{5} + \frac{50000}{721445251} a^{4} + \frac{192644641}{721445251} a^{3} + \frac{250000}{721445251} a^{2} + \frac{241777954}{721445251} a + \frac{200000}{721445251}$, $\frac{1}{721445251} a^{11} + \frac{207125533}{721445251} a^{8} - \frac{5500}{721445251} a^{7} - \frac{277080004}{721445251} a^{6} - \frac{220000}{721445251} a^{5} + \frac{58929937}{721445251} a^{4} - \frac{2750000}{721445251} a^{3} - \frac{106494427}{721445251} a^{2} - \frac{8800000}{721445251} a + \frac{105743462}{721445251}$, $\frac{1}{721445251} a^{12} - \frac{6600}{721445251} a^{8} - \frac{160801448}{721445251} a^{7} - \frac{308000}{721445251} a^{6} - \frac{59939638}{721445251} a^{5} - \frac{4950000}{721445251} a^{4} - \frac{64537564}{721445251} a^{3} - \frac{26400000}{721445251} a^{2} + \frac{231614051}{721445251} a - \frac{22000000}{721445251}$, $\frac{1}{721445251} a^{13} - \frac{323764161}{721445251} a^{8} + \frac{286000}{721445251} a^{7} - \frac{110942160}{721445251} a^{6} + \frac{12870000}{721445251} a^{5} + \frac{103289888}{721445251} a^{4} + \frac{171600000}{721445251} a^{3} + \frac{131343165}{721445251} a^{2} - \frac{149445251}{721445251} a + \frac{235384018}{721445251}$, $\frac{1}{721445251} a^{14} + \frac{364000}{721445251} a^{8} + \frac{170022290}{721445251} a^{7} + \frac{19110000}{721445251} a^{6} - \frac{125119624}{721445251} a^{5} + \frac{327600000}{721445251} a^{4} + \frac{238758952}{721445251} a^{3} - \frac{344335753}{721445251} a^{2} - \frac{163813872}{721445251} a + \frac{117109498}{721445251}$, $\frac{1}{721445251} a^{15} + \frac{128666199}{721445251} a^{8} - \frac{13650000}{721445251} a^{7} + \frac{173619351}{721445251} a^{6} + \frac{66245251}{721445251} a^{5} - \frac{228664434}{721445251} a^{4} + \frac{278788263}{721445251} a^{3} - \frac{295974705}{721445251} a^{2} - \frac{177854207}{721445251} a - \frac{345562354}{721445251}$
Class group and class number
$C_{220354}$, which has order $220354$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3640.01221338 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 16 |
| The 16 conjugacy class representatives for $C_{16}$ |
| Character table for $C_{16}$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| 41 | Data not computed | ||||||