Normalized defining polynomial
\( x^{16} - 6 x^{15} + 22 x^{14} - 60 x^{13} + 30 x^{12} + 446 x^{11} - 1369 x^{10} + 530 x^{9} + 4909 x^{8} - 10030 x^{7} + 1639 x^{6} + 20588 x^{5} - 31805 x^{4} + 7550 x^{3} + 38363 x^{2} - 53248 x + 22961 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(22850732699536000000000000=2^{16}\cdot 5^{12}\cdot 7^{4}\cdot 29^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{3106436190834034162194761} a^{15} + \frac{1013213033942036037605459}{3106436190834034162194761} a^{14} - \frac{1188946073775142215477987}{3106436190834034162194761} a^{13} + \frac{1431225405543938684255940}{3106436190834034162194761} a^{12} - \frac{31218798078796532412812}{282403290075821287472251} a^{11} + \frac{631862812082720838889869}{3106436190834034162194761} a^{10} + \frac{643812042690332988090753}{3106436190834034162194761} a^{9} - \frac{465045450957048317885807}{3106436190834034162194761} a^{8} + \frac{70523538624753211063137}{3106436190834034162194761} a^{7} + \frac{1465578038820902180852992}{3106436190834034162194761} a^{6} + \frac{279014458737802989305463}{3106436190834034162194761} a^{5} + \frac{1088846863167777876387462}{3106436190834034162194761} a^{4} + \frac{506002622113720228845714}{3106436190834034162194761} a^{3} + \frac{161340661405166973866930}{3106436190834034162194761} a^{2} + \frac{596366211208389475620075}{3106436190834034162194761} a + \frac{236603805494367801525041}{3106436190834034162194761}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{424501107524281844986400}{3106436190834034162194761} a^{15} + \frac{1871550127183543276002769}{3106436190834034162194761} a^{14} - \frac{6358768585064147249001154}{3106436190834034162194761} a^{13} + \frac{15345810383500545972389676}{3106436190834034162194761} a^{12} + \frac{1064334551853291287927352}{282403290075821287472251} a^{11} - \frac{170748079859090975025349289}{3106436190834034162194761} a^{10} + \frac{309341379682598575688028602}{3106436190834034162194761} a^{9} + \frac{267851670037191046472749286}{3106436190834034162194761} a^{8} - \frac{1658082956445268855476814676}{3106436190834034162194761} a^{7} + \frac{1617347462048324628888406053}{3106436190834034162194761} a^{6} + \frac{1881839999397729006681381526}{3106436190834034162194761} a^{5} - \frac{5744370200241753394016353199}{3106436190834034162194761} a^{4} + \frac{4351434503252633359404339174}{3106436190834034162194761} a^{3} + \frac{3728687844182948623528377049}{3106436190834034162194761} a^{2} - \frac{10350165622257288651718868356}{3106436190834034162194761} a + \frac{6114007365094243440549572311}{3106436190834034162194761} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2131120.31788 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2^2\times C_4).C_2^4$ (as 16T471):
| A solvable group of order 256 |
| The 46 conjugacy class representatives for $(C_2^2\times C_4).C_2^4$ |
| Character table for $(C_2^2\times C_4).C_2^4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.11600.1, \(\Q(\zeta_{5})\), 4.4.58000.1, 8.0.3364000000.5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $7$ | 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $29$ | 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 29.4.2.2 | $x^{4} - 29 x^{2} + 2523$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 29.8.4.1 | $x^{8} + 31958 x^{4} - 24389 x^{2} + 255328441$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |