Normalized defining polynomial
\( x^{16} - 2 x^{15} - 12 x^{14} + 40 x^{13} + 55 x^{12} - 518 x^{11} + 974 x^{10} + 420 x^{9} - 4046 x^{8} + 2060 x^{7} + 16641 x^{6} - 44736 x^{5} + 55945 x^{4} - 40390 x^{3} + 17302 x^{2} - 4254 x + 521 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(22850732699536000000000000=2^{16}\cdot 5^{12}\cdot 7^{4}\cdot 29^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{13} a^{14} - \frac{3}{13} a^{13} + \frac{5}{13} a^{12} + \frac{6}{13} a^{11} + \frac{2}{13} a^{10} + \frac{6}{13} a^{9} - \frac{5}{13} a^{8} + \frac{2}{13} a^{7} + \frac{3}{13} a^{6} + \frac{5}{13} a^{5} - \frac{1}{13} a^{4} + \frac{3}{13} a^{3} + \frac{2}{13} a^{2} + \frac{2}{13} a - \frac{1}{13}$, $\frac{1}{173381281994629007} a^{15} - \frac{3880938670183020}{173381281994629007} a^{14} - \frac{41322804247474131}{173381281994629007} a^{13} - \frac{50160802684199206}{173381281994629007} a^{12} + \frac{74650982798473610}{173381281994629007} a^{11} + \frac{24517457773549667}{173381281994629007} a^{10} + \frac{63758680784798703}{173381281994629007} a^{9} + \frac{3428102502148292}{173381281994629007} a^{8} + \frac{51398468345733289}{173381281994629007} a^{7} + \frac{40337938198089950}{173381281994629007} a^{6} + \frac{31007839336440701}{173381281994629007} a^{5} + \frac{36326784070578317}{173381281994629007} a^{4} + \frac{34010826386795803}{173381281994629007} a^{3} - \frac{5833735709417463}{13337021691894539} a^{2} + \frac{52717324387119220}{173381281994629007} a - \frac{30615488628427715}{173381281994629007}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{168541714066926}{173381281994629007} a^{15} - \frac{10485698558724482}{173381281994629007} a^{14} - \frac{82975091764306}{173381281994629007} a^{13} + \frac{146911253812085663}{173381281994629007} a^{12} - \frac{140771585932696436}{173381281994629007} a^{11} - \frac{1112931899663012906}{173381281994629007} a^{10} + \frac{3731094962099495602}{173381281994629007} a^{9} - \frac{1895289853235805510}{173381281994629007} a^{8} - \frac{13259804024869525966}{173381281994629007} a^{7} + \frac{20672666261685957180}{173381281994629007} a^{6} + \frac{36199644895032399698}{173381281994629007} a^{5} - \frac{140886974019608035711}{173381281994629007} a^{4} + \frac{173116135778490013132}{173381281994629007} a^{3} - \frac{102124617894360222021}{173381281994629007} a^{2} + \frac{30078842158264223878}{173381281994629007} a - \frac{354634598788306835}{13337021691894539} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 969289.203285 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2^2\times C_4).C_2^4$ (as 16T471):
| A solvable group of order 256 |
| The 46 conjugacy class representatives for $(C_2^2\times C_4).C_2^4$ |
| Character table for $(C_2^2\times C_4).C_2^4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 4.0.11600.1, 4.4.58000.1, 8.0.3364000000.5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $7$ | 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $29$ | 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 29.4.2.2 | $x^{4} - 29 x^{2} + 2523$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 29.8.4.1 | $x^{8} + 31958 x^{4} - 24389 x^{2} + 255328441$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |