Normalized defining polynomial
\( x^{16} - 5 x^{15} - 57 x^{14} + 440 x^{13} + 361 x^{12} - 11388 x^{11} + 33304 x^{10} + 39299 x^{9} - 604110 x^{8} + 2056869 x^{7} - 1227572 x^{6} - 15542808 x^{5} + 64709569 x^{4} - 130400988 x^{3} + 154253711 x^{2} - 103177579 x + 30084761 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(228477145661885006672293047985201=29^{12}\cdot 71^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $105.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $29, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{12} + \frac{1}{4} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4}$, $\frac{1}{52} a^{13} + \frac{1}{26} a^{12} + \frac{5}{52} a^{11} + \frac{2}{13} a^{10} - \frac{7}{26} a^{9} + \frac{19}{52} a^{8} + \frac{3}{13} a^{7} - \frac{1}{52} a^{6} + \frac{3}{13} a^{5} + \frac{5}{26} a^{4} - \frac{21}{52} a^{3} - \frac{11}{26} a^{2} - \frac{17}{52} a - \frac{1}{26}$, $\frac{1}{4316} a^{14} + \frac{33}{4316} a^{13} - \frac{58}{1079} a^{12} + \frac{1073}{4316} a^{11} + \frac{25}{332} a^{10} - \frac{2001}{4316} a^{9} - \frac{361}{4316} a^{8} - \frac{367}{2158} a^{7} + \frac{1229}{4316} a^{6} + \frac{1279}{4316} a^{5} - \frac{829}{4316} a^{4} - \frac{387}{4316} a^{3} + \frac{186}{1079} a^{2} - \frac{555}{4316} a - \frac{15}{52}$, $\frac{1}{97708352437438056347839321698931005987021656} a^{15} - \frac{2269302052758230983613221246891608363511}{48854176218719028173919660849465502993510828} a^{14} + \frac{386049597876897965510530849527742749774707}{97708352437438056347839321698931005987021656} a^{13} + \frac{582321961966748587489813911039116703117851}{7516027110572158180603024746071615845155512} a^{12} - \frac{395504489533625541123334065257944853505081}{1879006777643039545150756186517903961288878} a^{11} + \frac{14104453988345283299702378186368595679813651}{48854176218719028173919660849465502993510828} a^{10} - \frac{2344044336941129994302651374505960063823395}{6979168031245575453417094407066500427644404} a^{9} + \frac{5196437874629002337967659111067990491222843}{97708352437438056347839321698931005987021656} a^{8} + \frac{15540042861701326640802732071797582077977969}{97708352437438056347839321698931005987021656} a^{7} - \frac{1025914900016352066638100661988244757891199}{6979168031245575453417094407066500427644404} a^{6} - \frac{5711225891695469277712593245602534792997932}{12213544054679757043479915212366375748377707} a^{5} + \frac{8040661174342062368957817031870049880877243}{24427088109359514086959830424732751496755414} a^{4} + \frac{42775866741946599558945346075723477630915891}{97708352437438056347839321698931005987021656} a^{3} + \frac{16997658558483946512242539932375890368375719}{97708352437438056347839321698931005987021656} a^{2} - \frac{7352381645320858550658552255120084812292833}{48854176218719028173919660849465502993510828} a + \frac{34434859226375000109978091680030015255193}{168172723644471697672701070049795191027576}$
Class group and class number
$C_{14}$, which has order $14$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 488606731.59 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\wr C_4$ (as 16T172):
| A solvable group of order 64 |
| The 13 conjugacy class representatives for $C_2\wr C_4$ |
| Character table for $C_2\wr C_4$ |
Intermediate fields
| \(\Q(\sqrt{29}) \), 4.2.59711.1, 4.0.24389.1, 4.2.1731619.1, 8.4.521222775331469.1, 8.0.521222775331469.1, 8.0.2998504361161.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $29$ | 29.8.6.1 | $x^{8} - 203 x^{4} + 68121$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 29.8.6.1 | $x^{8} - 203 x^{4} + 68121$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $71$ | 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 71.8.6.1 | $x^{8} - 14129 x^{4} + 73805281$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ |