Normalized defining polynomial
\( x^{16} - 4 x^{15} + 4 x^{14} - 16 x^{13} + 156 x^{12} - 652 x^{11} + 1516 x^{10} - 2436 x^{9} + 7441 x^{8} - 30156 x^{7} + 82820 x^{6} - 142404 x^{5} + 136322 x^{4} - 54488 x^{3} + 75320 x^{2} - 199044 x + 167101 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2282521714753536000000000000=2^{44}\cdot 3^{12}\cdot 5^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.27$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{7} a^{11} + \frac{1}{7} a^{9} - \frac{2}{7} a^{8} - \frac{1}{7} a^{7} + \frac{3}{7} a^{6} - \frac{1}{7} a^{4} - \frac{1}{7} a^{3} + \frac{3}{7} a^{2} - \frac{2}{7} a - \frac{3}{7}$, $\frac{1}{21} a^{12} + \frac{1}{21} a^{10} - \frac{2}{21} a^{9} + \frac{2}{7} a^{8} + \frac{1}{7} a^{7} + \frac{1}{3} a^{6} + \frac{2}{7} a^{5} - \frac{8}{21} a^{4} - \frac{4}{21} a^{3} - \frac{3}{7} a^{2} + \frac{4}{21} a + \frac{1}{3}$, $\frac{1}{21} a^{13} + \frac{1}{21} a^{11} - \frac{2}{21} a^{10} + \frac{2}{7} a^{9} + \frac{1}{7} a^{8} + \frac{1}{3} a^{7} + \frac{2}{7} a^{6} - \frac{8}{21} a^{5} - \frac{4}{21} a^{4} - \frac{3}{7} a^{3} + \frac{4}{21} a^{2} + \frac{1}{3} a$, $\frac{1}{21} a^{14} + \frac{1}{21} a^{11} + \frac{5}{21} a^{10} + \frac{8}{21} a^{9} - \frac{5}{21} a^{8} - \frac{2}{7} a^{6} - \frac{10}{21} a^{5} - \frac{4}{21} a^{4} + \frac{5}{21} a^{3} + \frac{4}{21} a^{2} - \frac{10}{21} a + \frac{5}{21}$, $\frac{1}{8686837821747458349236032519467} a^{15} - \frac{25314057898536775839672783935}{2895612607249152783078677506489} a^{14} - \frac{1238709652176560926335992909}{59094134841819444552626071561} a^{13} + \frac{128874457864020460496295578773}{8686837821747458349236032519467} a^{12} + \frac{335717721432441244973606743652}{8686837821747458349236032519467} a^{11} - \frac{2779100355464286986886546523834}{8686837821747458349236032519467} a^{10} + \frac{2334414338514737323731569258290}{8686837821747458349236032519467} a^{9} - \frac{500480379692664429425811972175}{2895612607249152783078677506489} a^{8} + \frac{128404107548989350231975461380}{2895612607249152783078677506489} a^{7} + \frac{3474627554640613824181243320086}{8686837821747458349236032519467} a^{6} + \frac{2856767109056001228493506720107}{8686837821747458349236032519467} a^{5} + \frac{118546241437570844775794925809}{1240976831678208335605147502781} a^{4} + \frac{872103219849772250638595821885}{8686837821747458349236032519467} a^{3} - \frac{1821928570386752764893202150288}{8686837821747458349236032519467} a^{2} - \frac{3757832417374562060300787781948}{8686837821747458349236032519467} a + \frac{525120114550414681634574736691}{2895612607249152783078677506489}$
Class group and class number
$C_{2}\times C_{2}\times C_{80}$, which has order $320$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 55877.3346526 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_4.D_4$ |
| Character table for $C_4.D_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{15}) \), 4.0.576000.1, \(\Q(\sqrt{3}, \sqrt{5})\), 4.0.576000.2, 8.0.331776000000.26, 8.8.29859840000.1, 8.0.2985984000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| 5 | Data not computed | ||||||