Normalized defining polynomial
\( x^{16} - 20 x^{14} + 278 x^{12} - 1820 x^{10} + 6859 x^{8} - 17020 x^{6} + 33182 x^{4} - 50680 x^{2} + 52441 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2282521714753536000000000000=2^{44}\cdot 3^{12}\cdot 5^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.27$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{172} a^{12} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{7}{86} a^{6} + \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{15}{86} a^{2} + \frac{1}{4} a + \frac{35}{86}$, $\frac{1}{172} a^{13} - \frac{1}{4} a^{8} + \frac{18}{43} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} + \frac{15}{86} a^{3} + \frac{27}{172} a + \frac{1}{4}$, $\frac{1}{4126507757068} a^{14} + \frac{10138984403}{4126507757068} a^{12} - \frac{5723476097}{95965296676} a^{10} - \frac{1}{4} a^{9} - \frac{261876613837}{2063253878534} a^{8} - \frac{1}{2} a^{7} - \frac{1452627232395}{4126507757068} a^{6} + \frac{1}{4} a^{5} + \frac{480041034341}{1031626939267} a^{4} - \frac{78022621744}{1031626939267} a^{2} + \frac{1}{4} a + \frac{1928390388461}{4126507757068}$, $\frac{1}{944970276368572} a^{15} - \frac{325739553963}{944970276368572} a^{13} - \frac{19424362151}{5494013234701} a^{11} + \frac{130492868059235}{944970276368572} a^{9} - \frac{10277571520938}{236242569092143} a^{7} + \frac{326882650006469}{944970276368572} a^{5} + \frac{273308961660469}{944970276368572} a^{3} - \frac{99015921562770}{236242569092143} a$
Class group and class number
$C_{2}\times C_{4}\times C_{4}$, which has order $32$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 325480.409342 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4^2:C_2$ (as 16T27):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_4^2:C_2$ |
| Character table for $C_4^2:C_2$ |
Intermediate fields
| \(\Q(\sqrt{3}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{15}) \), \(\Q(\sqrt{3}, \sqrt{5})\), 8.0.746496000000.1, 8.8.2985984000000.1, 8.0.13271040000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||