Normalized defining polynomial
\( x^{16} - 4 x^{15} + 4 x^{14} - 16 x^{13} + 78 x^{12} - 112 x^{11} + 280 x^{10} - 576 x^{9} + 874 x^{8} - 1344 x^{7} + 3056 x^{6} - 2712 x^{5} + 3188 x^{4} - 2288 x^{3} - 1312 x^{2} + 816 x + 1156 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(228252171475353600000000=2^{40}\cdot 3^{12}\cdot 5^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{2} a^{11}$, $\frac{1}{42} a^{12} - \frac{1}{7} a^{11} + \frac{2}{21} a^{10} - \frac{5}{42} a^{9} + \frac{1}{14} a^{8} + \frac{2}{7} a^{7} + \frac{5}{21} a^{6} - \frac{1}{7} a^{5} + \frac{5}{21} a^{4} + \frac{4}{21} a^{3} - \frac{3}{7} a^{2} + \frac{2}{21} a + \frac{5}{21}$, $\frac{1}{42} a^{13} + \frac{5}{21} a^{11} - \frac{1}{21} a^{10} - \frac{1}{7} a^{9} + \frac{3}{14} a^{8} - \frac{1}{21} a^{7} + \frac{2}{7} a^{6} + \frac{8}{21} a^{5} - \frac{8}{21} a^{4} - \frac{2}{7} a^{3} - \frac{10}{21} a^{2} - \frac{4}{21} a + \frac{3}{7}$, $\frac{1}{16422} a^{14} + \frac{86}{8211} a^{13} + \frac{25}{8211} a^{12} + \frac{86}{357} a^{11} - \frac{452}{8211} a^{10} - \frac{1643}{16422} a^{9} + \frac{8}{1173} a^{8} - \frac{2740}{8211} a^{7} + \frac{3802}{8211} a^{6} + \frac{206}{2737} a^{5} - \frac{31}{161} a^{4} + \frac{52}{391} a^{3} - \frac{2819}{8211} a^{2} - \frac{2027}{8211} a - \frac{164}{483}$, $\frac{1}{316680736638041003382} a^{15} - \frac{6075532837041209}{316680736638041003382} a^{14} - \frac{2103376346245476455}{316680736638041003382} a^{13} + \frac{574166398087442133}{105560245546013667794} a^{12} + \frac{553036373499941258}{158340368319020501691} a^{11} + \frac{41519998464531055255}{316680736638041003382} a^{10} - \frac{6991405018905099701}{28789157876185545762} a^{9} + \frac{1906057814255110082}{22620052617002928813} a^{8} - \frac{45207497685030500968}{158340368319020501691} a^{7} - \frac{3508351746083458781}{9314139312883558923} a^{6} + \frac{78797309027271844816}{158340368319020501691} a^{5} + \frac{50466635459541936295}{158340368319020501691} a^{4} - \frac{778933723126066439}{14394578938092772881} a^{3} + \frac{627389710852651129}{14394578938092772881} a^{2} - \frac{47522105450982054856}{158340368319020501691} a + \frac{530271745209900352}{9314139312883558923}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}$, which has order $8$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15197.4244561 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $Q_8 : C_2$ |
| Character table for $Q_8 : C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |