Normalized defining polynomial
\( x^{16} + 132 x^{14} + 8438 x^{12} - 24 x^{11} + 337124 x^{10} + 3528 x^{9} + 9103527 x^{8} + 183072 x^{7} + 168416588 x^{6} + 1983264 x^{5} + 2065793754 x^{4} - 25740600 x^{3} + 15254320436 x^{2} - 472415544 x + 51546056158 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2282105044722241146451513778896896=2^{48}\cdot 3^{8}\cdot 7^{8}\cdot 11^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $121.59$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3696=2^{4}\cdot 3\cdot 7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3696}(1,·)$, $\chi_{3696}(2309,·)$, $\chi_{3696}(3079,·)$, $\chi_{3696}(461,·)$, $\chi_{3696}(1231,·)$, $\chi_{3696}(2003,·)$, $\chi_{3696}(2773,·)$, $\chi_{3696}(155,·)$, $\chi_{3696}(925,·)$, $\chi_{3696}(3233,·)$, $\chi_{3696}(1385,·)$, $\chi_{3696}(2155,·)$, $\chi_{3696}(2927,·)$, $\chi_{3696}(307,·)$, $\chi_{3696}(1079,·)$, $\chi_{3696}(1849,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{47} a^{13} + \frac{18}{47} a^{12} + \frac{13}{47} a^{11} + \frac{23}{47} a^{10} - \frac{6}{47} a^{9} - \frac{18}{47} a^{8} + \frac{20}{47} a^{7} + \frac{17}{47} a^{6} + \frac{15}{47} a^{4} + \frac{14}{47} a^{3} + \frac{4}{47} a^{2} - \frac{13}{47} a + \frac{17}{47}$, $\frac{1}{2018262767} a^{14} + \frac{10733802}{2018262767} a^{13} - \frac{450888335}{2018262767} a^{12} - \frac{773240030}{2018262767} a^{11} + \frac{139572877}{2018262767} a^{10} + \frac{658562605}{2018262767} a^{9} + \frac{940023901}{2018262767} a^{8} - \frac{482993666}{2018262767} a^{7} + \frac{619412601}{2018262767} a^{6} + \frac{977874495}{2018262767} a^{5} + \frac{707036418}{2018262767} a^{4} + \frac{3257450}{2018262767} a^{3} + \frac{37194120}{2018262767} a^{2} + \frac{299779460}{2018262767} a - \frac{461616116}{2018262767}$, $\frac{1}{49667119565711671314639280707636332465775169} a^{15} - \frac{490486033048667380962032550892127}{49667119565711671314639280707636332465775169} a^{14} + \frac{45962075281646482547450651075162123979759}{49667119565711671314639280707636332465775169} a^{13} - \frac{23576557048297069560558709984452013682022221}{49667119565711671314639280707636332465775169} a^{12} - \frac{10452765269915339414272120923485566746986794}{49667119565711671314639280707636332465775169} a^{11} + \frac{126447245745154580279306017963448774418377}{699536895291713680487877193065300457264439} a^{10} + \frac{16060924256733591382934889361575869911789275}{49667119565711671314639280707636332465775169} a^{9} - \frac{9882112410213650712395437454930834386274130}{49667119565711671314639280707636332465775169} a^{8} - \frac{14123179047463552777718579664812694830473306}{49667119565711671314639280707636332465775169} a^{7} + \frac{6493298020829683768921833158651566626139817}{49667119565711671314639280707636332465775169} a^{6} - \frac{14570957763223407075431024790753086514721357}{49667119565711671314639280707636332465775169} a^{5} - \frac{1800561082978452127266867245729749761992816}{49667119565711671314639280707636332465775169} a^{4} - \frac{2923069816452510783556800678132084684225726}{49667119565711671314639280707636332465775169} a^{3} + \frac{14254036724946496099626974659241484009409159}{49667119565711671314639280707636332465775169} a^{2} + \frac{20217512224244086167347264102819999110450325}{49667119565711671314639280707636332465775169} a + \frac{10735091717911996941178440002015948677464657}{49667119565711671314639280707636332465775169}$
Class group and class number
$C_{2}\times C_{4}\times C_{24}\times C_{48}\times C_{240}$, which has order $2211840$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11964.310642723332 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | R | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.24.9 | $x^{8} + 8 x^{7} + 14 x^{4} + 4 x^{2} + 8 x + 30$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ |
| 2.8.24.9 | $x^{8} + 8 x^{7} + 14 x^{4} + 4 x^{2} + 8 x + 30$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ | |
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $11$ | 11.8.4.1 | $x^{8} + 484 x^{4} - 1331 x^{2} + 58564$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 11.8.4.1 | $x^{8} + 484 x^{4} - 1331 x^{2} + 58564$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |