Normalized defining polynomial
\( x^{16} - 2 x^{15} + 10 x^{13} - 36 x^{12} + 138 x^{11} - 158 x^{10} - 52 x^{9} + 588 x^{8} - 1808 x^{7} + 5182 x^{6} - 4396 x^{5} + 8035 x^{4} - 4268 x^{3} + 3152 x^{2} + 430 x + 25 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(228194006908815802368=2^{24}\cdot 3^{8}\cdot 73^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{37} a^{13} - \frac{9}{37} a^{12} + \frac{6}{37} a^{11} - \frac{2}{37} a^{10} - \frac{13}{37} a^{9} - \frac{2}{37} a^{8} + \frac{9}{37} a^{7} - \frac{12}{37} a^{6} + \frac{15}{37} a^{5} + \frac{11}{37} a^{4} - \frac{18}{37} a^{3} - \frac{6}{37} a^{2} + \frac{16}{37} a - \frac{6}{37}$, $\frac{1}{37} a^{14} - \frac{1}{37} a^{12} + \frac{15}{37} a^{11} + \frac{6}{37} a^{10} - \frac{8}{37} a^{9} - \frac{9}{37} a^{8} - \frac{5}{37} a^{7} + \frac{18}{37} a^{6} - \frac{2}{37} a^{5} + \frac{7}{37} a^{4} + \frac{17}{37} a^{3} - \frac{1}{37} a^{2} - \frac{10}{37} a - \frac{17}{37}$, $\frac{1}{589345271932504302916285} a^{15} + \frac{1291440580708930662993}{589345271932504302916285} a^{14} + \frac{639467089768629418429}{117869054386500860583257} a^{13} + \frac{50506268279330884754038}{117869054386500860583257} a^{12} - \frac{73878695519916472009301}{589345271932504302916285} a^{11} + \frac{145335039358148985898978}{589345271932504302916285} a^{10} + \frac{282553983585916311167467}{589345271932504302916285} a^{9} + \frac{129801970289678988335628}{589345271932504302916285} a^{8} + \frac{911982471239596492774}{15928250592770386565305} a^{7} + \frac{241772064610589524802732}{589345271932504302916285} a^{6} + \frac{247316009745615015852702}{589345271932504302916285} a^{5} - \frac{1958655420740468046793}{15928250592770386565305} a^{4} + \frac{31090104698199623909507}{117869054386500860583257} a^{3} - \frac{212877178484947609909863}{589345271932504302916285} a^{2} - \frac{246070413457211013952633}{589345271932504302916285} a - \frac{1002339646627985568468}{117869054386500860583257}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{120178939186945998081}{45334251687115715608945} a^{15} + \frac{233319486924489850667}{45334251687115715608945} a^{14} - \frac{4002500836403371980}{9066850337423143121789} a^{13} - \frac{227053305665035468806}{9066850337423143121789} a^{12} + \frac{4377575374348783089611}{45334251687115715608945} a^{11} - \frac{16975650531060571197003}{45334251687115715608945} a^{10} + \frac{19030455407337766541203}{45334251687115715608945} a^{9} + \frac{5068644111287571989422}{45334251687115715608945} a^{8} - \frac{1890308213575473414399}{1225250045597722043485} a^{7} + \frac{225298467451920931255123}{45334251687115715608945} a^{6} - \frac{636717210021813510740487}{45334251687115715608945} a^{5} + \frac{14020063679793258849148}{1225250045597722043485} a^{4} - \frac{199611405668846075734073}{9066850337423143121789} a^{3} + \frac{455234448247771165442073}{45334251687115715608945} a^{2} - \frac{361751253019187893418682}{45334251687115715608945} a - \frac{12370011281191904857052}{9066850337423143121789} \) (order $12$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8789.29006692 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2.D_4^2.C_2$ (as 16T659):
| A solvable group of order 256 |
| The 25 conjugacy class representatives for $C_2.D_4^2.C_2$ |
| Character table for $C_2.D_4^2.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{3}) \), \(\Q(\zeta_{12})\), 8.0.1513728.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 73 | Data not computed | ||||||