Normalized defining polynomial
\( x^{16} - 2 x^{15} - 4 x^{14} + 14 x^{13} - 7 x^{12} - 36 x^{11} - 2 x^{10} + 58 x^{9} + 829 x^{8} + 1402 x^{7} - 2176 x^{6} - 7460 x^{5} - 4051 x^{4} + 7048 x^{3} + 11656 x^{2} + 6590 x + 1369 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(228194006908815802368=2^{24}\cdot 3^{8}\cdot 73^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{105943373349547299513809} a^{15} + \frac{52575237858946595281399}{105943373349547299513809} a^{14} + \frac{49082535909958241058000}{105943373349547299513809} a^{13} + \frac{1618937331989616126552}{3653219770674044810821} a^{12} - \frac{32511614408397332213062}{105943373349547299513809} a^{11} + \frac{39481902384064698987445}{105943373349547299513809} a^{10} - \frac{44861141755824370478430}{105943373349547299513809} a^{9} + \frac{1220365880827375989476}{105943373349547299513809} a^{8} + \frac{42606489437446495349314}{105943373349547299513809} a^{7} + \frac{51663548518204236754247}{105943373349547299513809} a^{6} - \frac{8435237162231402199437}{105943373349547299513809} a^{5} + \frac{10504733901132778225507}{105943373349547299513809} a^{4} + \frac{3467095716654454443587}{105943373349547299513809} a^{3} + \frac{1574672127419090772568}{105943373349547299513809} a^{2} - \frac{34674693989531209514440}{105943373349547299513809} a - \frac{45010967895888748292220}{105943373349547299513809}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{11611744361195356479}{149426478631237375901} a^{15} - \frac{35125618183247845393}{149426478631237375901} a^{14} - \frac{11040549237982846617}{149426478631237375901} a^{13} + \frac{6088807634781977763}{5152637194180599169} a^{12} - \frac{264819333671593145253}{149426478631237375901} a^{11} - \frac{153991835926244838419}{149426478631237375901} a^{10} + \frac{158537427084981885519}{149426478631237375901} a^{9} + \frac{493354058280643943056}{149426478631237375901} a^{8} + \frac{9121849748576957909159}{149426478631237375901} a^{7} + \frac{6897789312086004885155}{149426478631237375901} a^{6} - \frac{32771912436577086066674}{149426478631237375901} a^{5} - \frac{52735803845174221965564}{149426478631237375901} a^{4} + \frac{8940073732562417238050}{149426478631237375901} a^{3} + \frac{73499326690394231031197}{149426478631237375901} a^{2} + \frac{57615086531635872599796}{149426478631237375901} a + \frac{14691914943656109576805}{149426478631237375901} \) (order $12$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8789.29006692 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2.D_4^2.C_2$ (as 16T659):
| A solvable group of order 256 |
| The 25 conjugacy class representatives for $C_2.D_4^2.C_2$ |
| Character table for $C_2.D_4^2.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{3}) \), \(\Q(\zeta_{12})\), 8.0.1513728.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 73 | Data not computed | ||||||