Normalized defining polynomial
\( x^{16} + 304 x^{14} + 37544 x^{12} + 2414368 x^{10} + 86011860 x^{8} + 1663938528 x^{6} + 15807416016 x^{4} + 57207791296 x^{2} + 142701862081 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(22795311112775003166262217194602496=2^{64}\cdot 7^{8}\cdot 11^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $140.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2464=2^{5}\cdot 7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2464}(1,·)$, $\chi_{2464}(1539,·)$, $\chi_{2464}(1541,·)$, $\chi_{2464}(1231,·)$, $\chi_{2464}(1233,·)$, $\chi_{2464}(923,·)$, $\chi_{2464}(925,·)$, $\chi_{2464}(2463,·)$, $\chi_{2464}(615,·)$, $\chi_{2464}(617,·)$, $\chi_{2464}(2155,·)$, $\chi_{2464}(2157,·)$, $\chi_{2464}(307,·)$, $\chi_{2464}(309,·)$, $\chi_{2464}(1847,·)$, $\chi_{2464}(1849,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{31161} a^{8} + \frac{152}{31161} a^{6} + \frac{7220}{31161} a^{4} - \frac{14900}{31161} a^{2} + \frac{11354}{31161}$, $\frac{1}{11771348199} a^{9} - \frac{2030076676}{11771348199} a^{7} + \frac{740797673}{11771348199} a^{5} + \frac{4607450560}{11771348199} a^{3} - \frac{3315394402}{11771348199} a$, $\frac{1}{11771348199} a^{10} + \frac{190}{11771348199} a^{8} + \frac{1085809377}{3923782733} a^{6} - \frac{5337432874}{11771348199} a^{4} + \frac{53186684}{692432247} a^{2} + \frac{3158}{31161}$, $\frac{1}{11771348199} a^{11} + \frac{517506004}{11771348199} a^{7} - \frac{1610937452}{3923782733} a^{5} - \frac{1143888682}{3923782733} a^{3} - \frac{4534903444}{11771348199} a$, $\frac{1}{11771348199} a^{12} - \frac{7942}{3923782733} a^{8} - \frac{1097909123}{11771348199} a^{6} + \frac{3291688636}{11771348199} a^{4} - \frac{3573506789}{11771348199} a^{2} - \frac{5641}{31161}$, $\frac{1}{11771348199} a^{13} - \frac{95003216}{905488323} a^{7} - \frac{268096382}{905488323} a^{5} + \frac{5721580096}{11771348199} a^{3} + \frac{2799802918}{11771348199} a$, $\frac{1}{11771348199} a^{14} - \frac{147637}{11771348199} a^{8} - \frac{1374303386}{3923782733} a^{6} - \frac{341480042}{3923782733} a^{4} + \frac{1493890055}{11771348199} a^{2} + \frac{3475}{31161}$, $\frac{1}{11771348199} a^{15} + \frac{270362936}{905488323} a^{7} + \frac{525491666}{11771348199} a^{5} + \frac{257947054}{3923782733} a^{3} + \frac{202322713}{905488323} a$
Class group and class number
$C_{2}\times C_{48}\times C_{32304}$, which has order $3101184$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15753.94986242651 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-77}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-154}) \), \(\Q(\sqrt{2}, \sqrt{-77})\), \(\Q(\zeta_{16})^+\), 4.0.12142592.8, 8.0.589770161913856.75, \(\Q(\zeta_{32})^+\), 8.0.75490580724973568.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | R | R | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 11 | Data not computed | ||||||