Normalized defining polynomial
\( x^{16} - 2 x^{15} - 6 x^{14} + 14 x^{13} + 44 x^{12} - 210 x^{11} + 358 x^{10} - 338 x^{9} + 546 x^{8} - 2318 x^{7} + 7006 x^{6} - 13854 x^{5} + 19172 x^{4} - 19006 x^{3} + 13170 x^{2} - 5822 x + 1261 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2274539878974650056704=2^{28}\cdot 3^{14}\cdot 11^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{12} a^{8} + \frac{1}{6} a^{7} - \frac{1}{6} a^{6} + \frac{1}{6} a^{5} - \frac{1}{6} a^{4} + \frac{1}{6} a^{3} - \frac{1}{6} a^{2} + \frac{1}{6} a + \frac{1}{12}$, $\frac{1}{12} a^{9} + \frac{1}{4} a + \frac{1}{3}$, $\frac{1}{12} a^{10} + \frac{1}{4} a^{2} + \frac{1}{3} a$, $\frac{1}{12} a^{11} + \frac{1}{4} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{48} a^{12} - \frac{1}{24} a^{11} - \frac{1}{24} a^{10} - \frac{1}{24} a^{9} - \frac{1}{48} a^{8} - \frac{1}{6} a^{7} - \frac{1}{12} a^{6} - \frac{1}{6} a^{5} - \frac{1}{48} a^{4} - \frac{11}{24} a^{3} - \frac{3}{8} a^{2} - \frac{11}{24} a - \frac{5}{16}$, $\frac{1}{48} a^{13} - \frac{1}{24} a^{11} - \frac{1}{24} a^{10} - \frac{1}{48} a^{9} - \frac{1}{24} a^{8} - \frac{1}{12} a^{7} - \frac{1}{6} a^{6} - \frac{1}{48} a^{5} + \frac{1}{6} a^{4} + \frac{7}{24} a^{3} - \frac{11}{24} a^{2} - \frac{5}{16} a - \frac{1}{8}$, $\frac{1}{96} a^{14} - \frac{1}{96} a^{12} + \frac{1}{96} a^{10} - \frac{1}{24} a^{9} - \frac{1}{96} a^{8} - \frac{1}{12} a^{7} - \frac{13}{96} a^{6} - \frac{1}{6} a^{5} + \frac{5}{96} a^{4} + \frac{1}{4} a^{3} - \frac{13}{96} a^{2} + \frac{5}{24} a + \frac{37}{96}$, $\frac{1}{405435168} a^{15} + \frac{384275}{135145056} a^{14} - \frac{27541}{45048352} a^{13} - \frac{2747869}{405435168} a^{12} - \frac{189949}{135145056} a^{11} - \frac{3927865}{135145056} a^{10} - \frac{510991}{17627616} a^{9} - \frac{1097711}{135145056} a^{8} + \frac{5387827}{45048352} a^{7} + \frac{28828843}{405435168} a^{6} - \frac{25625621}{135145056} a^{5} - \frac{1260959}{45048352} a^{4} - \frac{139026397}{405435168} a^{3} + \frac{9711639}{45048352} a^{2} - \frac{11414881}{135145056} a + \frac{1243513}{4179744}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{15650831}{405435168} a^{15} - \frac{901837}{33786264} a^{14} - \frac{11273591}{45048352} a^{13} + \frac{22361653}{101358792} a^{12} + \frac{84233255}{45048352} a^{11} - \frac{8069622}{1407761} a^{10} + \frac{125988631}{17627616} a^{9} - \frac{167008019}{33786264} a^{8} + \frac{2066714287}{135145056} a^{7} - \frac{7098736801}{101358792} a^{6} + \frac{24955775833}{135145056} a^{5} - \frac{10651560637}{33786264} a^{4} + \frac{151028632093}{405435168} a^{3} - \frac{1291274965}{4223283} a^{2} + \frac{21790174777}{135145056} a - \frac{45355825}{1044936} \) (order $12$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 52295.3343635 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$D_4.C_2^3.C_2$ (as 16T264):
| A solvable group of order 128 |
| The 32 conjugacy class representatives for $D_4.C_2^3.C_2$ |
| Character table for $D_4.C_2^3.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-3}) \), 4.0.4752.1, 4.4.4752.1, \(\Q(\zeta_{12})\), 8.0.22581504.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.16.4 | $x^{8} + 6 x^{6} + 6 x^{4} + 8 x^{3} + 4 x^{2} + 8 x + 20$ | $4$ | $2$ | $16$ | $D_4$ | $[2, 3]^{2}$ |
| 2.8.12.13 | $x^{8} + 12 x^{4} + 16$ | $4$ | $2$ | $12$ | $D_4$ | $[2, 2]^{2}$ | |
| 3 | Data not computed | ||||||
| $11$ | 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 11.8.6.1 | $x^{8} + 143 x^{4} + 5929$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |