Normalized defining polynomial
\( x^{16} - 2 x^{15} + 10 x^{14} - 20 x^{13} + 34 x^{12} - 156 x^{11} - 20 x^{10} + 488 x^{9} + 1144 x^{8} + 2296 x^{7} - 280 x^{6} - 32 x^{5} + 384 x^{4} + 2136 x^{3} + 2824 x^{2} - 4144 x + 1960 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(22613464583653166220836864=2^{24}\cdot 389^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 389$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{4} a^{11}$, $\frac{1}{4} a^{12}$, $\frac{1}{44} a^{13} + \frac{1}{11} a^{12} - \frac{1}{22} a^{11} + \frac{3}{22} a^{10} - \frac{5}{22} a^{9} - \frac{1}{11} a^{8} + \frac{5}{11} a^{5} - \frac{1}{11} a^{4} - \frac{3}{11} a^{3} - \frac{4}{11} a^{2} - \frac{2}{11} a - \frac{1}{11}$, $\frac{1}{44} a^{14} + \frac{1}{11} a^{12} + \frac{3}{44} a^{11} + \frac{5}{22} a^{10} - \frac{2}{11} a^{9} - \frac{3}{22} a^{8} - \frac{1}{22} a^{6} + \frac{1}{11} a^{5} + \frac{1}{11} a^{4} - \frac{3}{11} a^{3} + \frac{3}{11} a^{2} - \frac{4}{11} a + \frac{4}{11}$, $\frac{1}{10671381783818271633308884} a^{15} - \frac{129650012187612073607}{84026628219041508923692} a^{14} - \frac{45878327105479936937697}{5335690891909135816654442} a^{13} - \frac{1398917736656145168973}{84026628219041508923692} a^{12} + \frac{817476974456815624297779}{10671381783818271633308884} a^{11} - \frac{84225718912366685180111}{2667845445954567908327221} a^{10} - \frac{586835045933601763750457}{2667845445954567908327221} a^{9} - \frac{810362745506448494617321}{5335690891909135816654442} a^{8} + \frac{110933676901751240139965}{5335690891909135816654442} a^{7} + \frac{1802222156990347772719}{381120777993509701189603} a^{6} + \frac{7988845866226768968133}{22418869293735864775859} a^{5} + \frac{273940154668079695519737}{2667845445954567908327221} a^{4} - \frac{1216150905006399052782835}{2667845445954567908327221} a^{3} - \frac{931662736751365736529809}{2667845445954567908327221} a^{2} + \frac{13948116765678436801318}{242531404177687991666111} a + \frac{73055780192961753816120}{381120777993509701189603}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1404863.99526 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 6144 |
| The 41 conjugacy class representatives for t16n1691 |
| Character table for t16n1691 is not computed |
Intermediate fields
| 4.4.6224.1, 8.4.60276601856.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $16$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{6}$ | $16$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $16$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | $16$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 389 | Data not computed | ||||||