Normalized defining polynomial
\( x^{16} - x^{15} + 35 x^{14} - 52 x^{13} + 426 x^{12} - 834 x^{11} + 2908 x^{10} - 5441 x^{9} + 12734 x^{8} - 20894 x^{7} + 36823 x^{6} - 49114 x^{5} + 65638 x^{4} - 66318 x^{3} + 63428 x^{2} - 39339 x + 19211 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(22585894701900222828166433=17^{15}\cdot 53^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{16013} a^{14} - \frac{2829}{16013} a^{13} - \frac{970}{16013} a^{12} + \frac{4752}{16013} a^{11} - \frac{1829}{16013} a^{10} + \frac{6191}{16013} a^{9} + \frac{3715}{16013} a^{8} - \frac{3625}{16013} a^{7} + \frac{3919}{16013} a^{6} - \frac{1729}{16013} a^{5} - \frac{5464}{16013} a^{4} + \frac{1202}{16013} a^{3} + \frac{6129}{16013} a^{2} - \frac{199}{16013} a - \frac{5898}{16013}$, $\frac{1}{690566194599920398863276991} a^{15} + \frac{14428737279049097286310}{690566194599920398863276991} a^{14} - \frac{2033326798308122436183773}{10306958128357020878556373} a^{13} - \frac{36113245427720514890159247}{690566194599920398863276991} a^{12} + \frac{110332151766398763375216972}{690566194599920398863276991} a^{11} + \frac{102236046910001773818919986}{690566194599920398863276991} a^{10} - \frac{41483784668995925869731019}{690566194599920398863276991} a^{9} - \frac{250213828182844428450639574}{690566194599920398863276991} a^{8} + \frac{233398456884159139127045696}{690566194599920398863276991} a^{7} - \frac{888340964055777080246548}{2889398303765357317419569} a^{6} + \frac{118208132180122613468225145}{690566194599920398863276991} a^{5} - \frac{57431778574801815406655822}{690566194599920398863276991} a^{4} + \frac{156953381015147112874735861}{690566194599920398863276991} a^{3} + \frac{42087680167378838161571195}{690566194599920398863276991} a^{2} - \frac{329097055046218809165784404}{690566194599920398863276991} a - \frac{317678849449758609706028972}{690566194599920398863276991}$
Class group and class number
$C_{9}\times C_{18}$, which has order $162$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3640.01221338 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_{16} : C_2$ |
| Character table for $C_{16} : C_2$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| $53$ | 53.8.4.2 | $x^{8} - 148877 x^{2} + 142028658$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ |
| 53.8.0.1 | $x^{8} + x^{2} - x + 33$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |